The current study examines the passive pulmonary targeting efficacy and retention of 6μm polystyrene (PS) microparticles (MPs) covalently modified with different surface groups [amine (A-), carboxyl (C-) and sulfate (S-)] or single (PEG(1)-) and double (PEG(2)-) layers of α,ω-diamino poly(ethylene glycol) attached to C-MPs. The ζ-potential of A-MPs (-44.0mV), C-MPs (-54.3mV) and S-MPs (-49.6mV) in deionized water were similar; however PEGylation increased the ζ-potential for both PEG(1)-MPs (-18.3mV) and PEG(2)-MPs (11.5mV). The biodistribution and retention of intravenously administered MPs to male Sprague-Dawley rats was determined in homogenized tissue by fluorescence spectrophotometry. PEG(1)-MPs and PEG(2)-MPs demonstrated enhanced pulmonary retention in rats at 48h after injection when compared to unmodified A-MPs (59.6%, 35.9% and 17.0% of the administered dose, respectively). While unmodified MPs did not significantly differ in lung retention, PEGylation of MPs unexpectedly improved passive lung targeting and retention by modifying surface properties including charge and hydrophobicity but not size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912554PMC
http://dx.doi.org/10.1016/j.ijpharm.2010.09.020DOI Listing

Publication Analysis

Top Keywords

passive pulmonary
8
pulmonary targeting
8
targeting retention
8
retention
6
enhanced passive
4
retention pegylated
4
pegylated rigid
4
rigid microparticles
4
microparticles rats
4
rats current
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!