Gene therapy for β-thalassaemia: the continuing challenge.

Expert Rev Mol Med

Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece.

Published: October 2010

The β-thalassaemias are inherited anaemias that form the most common class of monogenic disorders in the world. Treatment options are limited, with allogeneic haematopoietic stem cell transplantation offering the only hope for lifelong cure. However, this option is not available for many patients as a result of either the lack of compatible donors or the increased risk of transplant-related mortality in subjects with organ damage resulting from accumulated iron. The paucity of alternative treatments for patients that fall into either of these categories has led to the development of a revolutionary treatment strategy based on gene therapy. This approach involves replacing allogeneic stem cell transplantation with the transfer of normal globin genes into patient-derived, autologous haematopoietic stem cells. This highly attractive strategy offers several advantages, including bypassing the need for allogeneic donors and the immunosuppression required to achieve engraftment of the transplanted cells and to eliminate the risk of donor-related graft-versus-host disease. This review discusses the many advances that have been made towards this endeavour as well as the hurdles that must still be overcome before gene therapy for β-thalassaemia, as well as many other gene therapy applications, can be widely applied in the clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1462399410001626DOI Listing

Publication Analysis

Top Keywords

gene therapy
16
therapy β-thalassaemia
8
haematopoietic stem
8
stem cell
8
cell transplantation
8
gene
4
β-thalassaemia continuing
4
continuing challenge
4
challenge β-thalassaemias
4
β-thalassaemias inherited
4

Similar Publications

Congenital muscular dystrophies and myopathies: the leading cause of genetic muscular disorders in eleven Chinese families.

BMC Musculoskelet Disord

January 2025

Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.

Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.

Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.

View Article and Find Full Text PDF

Background: Programmed cell death ligand 1 (PD-L1) expression on immune cells is correlated with the efficacy of immune checkpoint inhibitor (ICI) therapy in various types of cancer. Platelets are important components of the tumour microenvironment (TME) and are widely involved in the development of many types of cancer including colorectal cancer (CRC). However, the role of PD-L1 positive platelets in ICI therapy for CRC remains unknown.

View Article and Find Full Text PDF

Donor-derived GD2-specific CAR T cells in relapsed or refractory neuroblastoma.

Nat Med

January 2025

Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.

Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Genetic and clinical spectrum of steroid-resistant nephrotic syndrome with nuclear pore gene mutation.

Pediatr Nephrol

January 2025

Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.

Background: Steroid-resistant nephrotic syndrome (SRNS) is insensitive to steroid therapy and overwhelmingly progresses to kidney failure (KF), the known pathogenic genes of which include key subunits of the nuclear pore complex (NPC), a less-recognized contributor to glomerular podocyte injury.

Methods: After analyzing their clinical characterizations and obtaining parental consent, whole-exome sequencing (WES) was performed on patients with SRNS. Several nucleoporin (NUP) biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing from white cells of peripheral blood, minigene assay, immunohistochemical (IHC) staining, and electron microscopy (EM) ultrastructure observation of kidney biopsy, as well as multiple in silico prediction tools, including 3D protein modeling.

View Article and Find Full Text PDF

Why cancer cells disproportionately accumulate polyubiquitinated proteotoxic proteins despite high proteasomal activity is an outstanding question. While mis-regulated ubiquitination is a contributing factor, here we show that a structurally-perturbed and sub-optimally functioning proteasome is at the core of altered proteostasis in tumors. By integrating the gene coexpression signatures of proteasomal subunits in breast cancer (BrCa) patient tissues with the atomistic details of 26S holocomplex, we find that the transcriptional deregulation induced-stoichiometric imbalances perpetuate with disease severity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!