Spatial asymmetry in the mechanosensory phenotypes of the C. elegans DEG/ENaC gene mec-10.

J Neurophysiol

Cell Biology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.

Published: December 2010

AI Article Synopsis

Article Abstract

DEG/ENaC channels have been broadly implicated in mechanosensory transduction, yet many questions remain about how these proteins contribute to complexes that sense mechanical stimuli. In C. elegans, two DEG/ENaC channel subunits are thought to contribute to a gentle touch transduction complex: MEC-4, which is essential for gentle touch sensation, and MEC-10, whose importance is less well defined. By characterizing a mec-10 deletion mutant, we have found that MEC-10 is important, but not essential, for gentle touch responses in the body touch neurons ALM, PLM, and PVM. Surprisingly, the requirement for MEC-10 in ALM and PLM is spatially asymmetric; mec-10 animals show significant behavioral and physiological responses to stimulation at the distal end of touch neuron dendrites, but respond poorly to stimuli applied near the neuronal cell body. The subcellular distribution of a rescuing MEC-10::GFP translational fusion was found to be restricted to the neuronal cell body and proximal dendrite, consistent with the hypothesis that MEC-10 protein is asymmetrically distributed within the touch neuron process. These results suggest that MEC-10 may contribute to only a subset of gentle touch mechanosensory complexes found preferentially at the proximal dendrite.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3007656PMC
http://dx.doi.org/10.1152/jn.00330.2010DOI Listing

Publication Analysis

Top Keywords

gentle touch
16
elegans deg/enac
8
mec-10
8
essential gentle
8
alm plm
8
touch neuron
8
neuronal cell
8
cell body
8
proximal dendrite
8
touch
7

Similar Publications

While piezoelectric sensing and energy-harvesting devices still largely rely on inorganic components, biocompatible and biodegradable piezoelectric materials, such as cellulose nanocrystals, might constitute optimal and sustainable building blocks for a variety of applications in electronics and transient implants. To this aim, however, effective methods are needed to position cellulose nanocrystals in large and high-performance architectures. Here, we report on scalable assemblies of cellulose nanocrystals in multilayered piezoelectric systems with exceptional response, for various application scopes.

View Article and Find Full Text PDF

C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals.

View Article and Find Full Text PDF
Article Synopsis
  • Individuals with symptomatic lower extremity peripheral artery disease (PAD) experience significant leg pain and reduced quality of life, with limited treatment options currently available.
  • Emerging research shows that regular heat therapy (HT) might enhance cardiovascular and physical function in PAD patients, but practical, unsupervised HT methods for the elderly are lacking.
  • A new portable leg HT system was developed for elderly patients, featuring safety mechanisms and tested for 12 weeks with positive results in terms of usability, safety, and improved clinical outcomes, including increased leg temperature and reduced blood pressure.
View Article and Find Full Text PDF

The evidence on how touch-based therapy acts on the brain activity opens novel cues for the treatment of chronic pain conditions for which no definitive treatment exists. Touch-based therapies, particularly those involving C-tactile (CT)-optimal touch, have gained increasing attention for their potential in modulating pain perception and improving psychological well-being. While previous studies have focused on the biomechanical effects of manual therapy, recent research has shifted towards understanding the neurophysiological mechanisms underlying these interventions.

View Article and Find Full Text PDF

Human affective touch is known to be beneficial for social-emotional interactions and has a therapeutic effect. For touch initiated by robotic entities, richer affective affordance is a critical enabler to unlock its potential in social-emotional interactions and especially in care and therapeutic applications. Simulating the attributes of particular types of human affective touch to inform robotic touch design can be a beneficial step.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!