Induction of vertebrate regeneration by a transient sodium current.

J Neurosci

Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155, USA.

Published: September 2010

Amphibians such as frogs can restore lost organs during development, including the lens and tail. To design biomedical therapies for organ repair, it is necessary to develop a detailed understanding of natural regeneration. Recently, ion transport has been implicated as a functional regulator of regeneration. Whereas voltage-gated sodium channels play a well known and important role in propagating action potentials in excitable cells, we have identified a novel role in regeneration for the ion transport function mediated by the voltage-gated sodium channel, Na(V)1.2. A local, early increase in intracellular sodium is required for initiating regeneration following Xenopus laevis tail amputation, and molecular and pharmacological inhibition of sodium transport causes regenerative failure. Na(V)1.2 is absent under nonregenerative conditions, but misexpression of human Na(V)1.5 can rescue regeneration during these states. Remarkably, pharmacological induction of a transient sodium current is capable of restoring regeneration even after the formation of a nonregenerative wound epithelium, confirming that it is the regulation of sodium transport that is critical for regeneration. Our studies reveal a previously undetected competency window in which cells retain their intrinsic regenerative program, identify a novel endogenous role for Na(V) in regeneration, and show that modulation of sodium transport represents an exciting new approach to organ repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965411PMC
http://dx.doi.org/10.1523/JNEUROSCI.3315-10.2010DOI Listing

Publication Analysis

Top Keywords

sodium transport
12
regeneration
9
sodium
8
transient sodium
8
sodium current
8
organ repair
8
regeneration ion
8
ion transport
8
voltage-gated sodium
8
transport
5

Similar Publications

Pseudogenization of the Slc23a4 gene is necessary for the survival of Xdh-deficient mice.

Sci Rep

January 2025

Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.

In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.

View Article and Find Full Text PDF

Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.

View Article and Find Full Text PDF

Management of SGLT-2 Inhibitors in the Perioperative Period: Withhold or Continue?

Br J Hosp Med (Lond)

January 2025

Department of Anaesthesia, Northumbria Healthcare NHS Foundation Trust, Newcastle-Upon-Tyne, UK.

Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are commonly prescribed in diabetes mellitus and increasingly for cardiorenal protection. They carry the risk of euglycaemic diabetic ketoacidosis (eDKA). Guidelines around the perioperative handling of these medications are limited and some evidence suggests that withholding them can lead to more surgical complications and poorer glycaemic control.

View Article and Find Full Text PDF

Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields.

Polymers (Basel)

January 2025

Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.

In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.

View Article and Find Full Text PDF

This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze-thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!