Neointimal hyperplasia contributes to failure of hemodialysis arteriovenous fistulas (AVFs). Increased expression of matrix metalloproteinase (MMP)-9 occurs in AVFs, and MMP-9 is implicated in neointimal hyperplasia and vascular injury. Recent studies demonstrate that MMP-9, by degrading N-cadherin, leads to increased expression of β-catenin and β-catenin-dependent proliferation of smooth muscle cells. The present study examined this pathway in the venous limb of a murine AVF model. Western analyses demonstrate that, in this model, there is diminished expression of N-cadherin accompanied by increased expression of β-catenin, c-Myc, and proliferating cell nuclear antigen (PCNA). By immunohistochemistry, β-catenin and c-Myc localized to proliferating smooth muscle cells in the venous limb of the AVF. Increased expression of β-catenin was accompanied by augmented expression of phosphorylated (p)-glycogen synthase kinase (GSK)-3β, GSK-3β, and integrin-linked kinase. The administration of doxycycline suppressed MMP-9 expression but did not reduce venous histological injury in the AVF, or increase AVF patency assessed 6 wk after its creation. Doxycycline did not influence expression of β-catenin, c-Myc, GSK-3β, or integrin-linked kinase. Thus, in this vascular injury model, the upregulation of β-catenin cannot be readily attributed to MMP-9 upregulation; increased β-catenin expression may reflect either the upregulation of p-GSK-3β, GSK-3β, or integrin-linked kinase. This study provides the first exploration of β-catenin in an AVF, demonstrating substantial upregulation of this mitogenic signaling molecule and uncovering possible mechanisms that may account for such upregulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006312 | PMC |
http://dx.doi.org/10.1152/ajprenal.00488.2010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!