Construction of patient specific atlases from locally most similar anatomical pieces.

Med Image Comput Comput Assist Interv

INRIA Sophia Antipolis-Asclepios Team, France.

Published: November 2010

Radiotherapy planning requires accurate delineations of the critical structures. To avoid manual contouring, atlas-based segmentation can be used to get automatic delineations. However, the results strongly depend on the chosen atlas, especially for the head and neck region where the anatomical variability is high. To address this problem, atlases adapted to the patient's anatomy may allow for a better registration, and already showed an improvement in segmentation accuracy. However, building such atlases requires the definition of a criterion to select among a database the images that are the most similar to the patient. Moreover, the inter-expert variability of manual contouring may be high, and therefore bias the segmentation if selecting only one image for each region. To tackle these issues, we present an original method to design a piecewise most similar atlas. Given a query image, we propose an efficient criterion to select for each anatomical region the K most similar images among a database by considering local volume variations possibly induced by the tumor. Then, we present a new approach to combine the K images selected for each region into a piecewise most similar template. Our results obtained with 105 CT images of the head and neck show that our method reduces the over-segmentation seen with an average atlas while being robust to inter-expert manual segmentation variability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085027PMC
http://dx.doi.org/10.1007/978-3-642-15711-0_20DOI Listing

Publication Analysis

Top Keywords

manual contouring
8
head neck
8
criterion select
8
construction patient
4
patient specific
4
specific atlases
4
atlases locally
4
locally anatomical
4
anatomical pieces
4
pieces radiotherapy
4

Similar Publications

Head and neck automatic multi-organ segmentation on Dual-Energy Computed Tomography.

Phys Imaging Radiat Oncol

October 2024

Université Paris-Saclay, Gustave Roussy, Inserm, Molecular Radiotherapy and Therapeutic Innovation, U1030, 94800 Villejuif, France.

Background And Purpose: Deep-learning-based automatic segmentation is widely used in radiation oncology to delineate organs-at-risk. Dual-energy CT (DECT) allows the reconstruction of enhanced contrast images that could help with manual and auto-delineation. This paper presents a performance evaluation of a commercial auto-segmentation software on image series generated by a DECT.

View Article and Find Full Text PDF

Background And Purpose: A novel ring-gantry cone-beam computed tomography (CBCT) imaging system shows improved image quality compared to its conventional version, but its effect on autosegmentation is unknown. This study evaluates the impact of this high-performance CBCT on autosegmentation performance, inter-observer variability, contour correction times and delineation confidence, compared to the conventional CBCT.

Materials And Methods: Twenty prostate cancer patients were enrolled in this prospective clinical study.

View Article and Find Full Text PDF

: Prostate cancer (PCa) is the most frequent neoplasia in the male population. According to the International Society of Urological Pathology (ISUP), PCa can be divided into two major groups, based on their prognosis and treatment options. Multiparametric magnetic resonance imaging (mpMRI) holds a central role in PCa assessment; however, it does not have a one-to-one correspondence with the histopathological grading of tumors.

View Article and Find Full Text PDF

Automated segmentation of deep brain structures from Inversion-Recovery MRI.

Comput Med Imaging Graph

January 2025

Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.

Methods for the automated segmentation of brain structures are a major subject of medical research. The small structures of the deep brain have received scant attention, notably for lack of manual delineations by medical experts. In this study, we assessed an automated segmentation of a novel clinical dataset containing White Matter Attenuated Inversion-Recovery (WAIR) MRI images and five manually segmented structures (substantia nigra (SN), subthalamic nucleus (STN), red nucleus (RN), mammillary body (MB) and mammillothalamic fascicle (MT-fa)) in 53 patients with severe Parkinson's disease.

View Article and Find Full Text PDF

Purpose: To investigate the performance of a machine learning-based segmentation method for treatment planning of gastric cancer.

Materials And Methods: Eighteen patients planned to be irradiated for gastric cancer were studied. The target and the surrounding organs-at-risk (OARs) were manually delineated on CT scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!