Optimal selection of biological tissue using the energy dissipated in the first loading cycle.

J Biomed Mater Res B Appl Biomater

Departamento de Ciencia de Materiales, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica, Madrid, Spain.

Published: November 2010

AI Article Synopsis

  • Calf pericardium used for prosthetic valve manufacturing was tested under stress, revealing that half of the samples broke after 100 cycles of loading.
  • Surviving samples showed a lower mean energy dissipation in the first cycle (0.16 J) compared to the broken samples (0.28 J), indicating a correlation between energy dissipation and fatigue resistance.
  • By setting a threshold energy value of 0.20 J, prediction accuracy improved to nearly 80%, and with thickness included, accuracy exceeded 95%, suggesting this method could enhance the selection of biological materials.

Article Abstract

Calf pericardium, similar to that used in the manufacturing of prosthetic valve cusps, was fatigue tested. After six batches of 100 cycles of 1 MPa of loading pressure, half of the samples broke. The mean energy dissipated in the first cycle by the surviving samples was 0.16 J, which is lower than the 0.28 J dissipated by the specimens that broke (p = 0.005). The hysteresis of the first cycle was characteristic and different from the following ones and correlated superbly with fatigue resistance. Setting a threshold value for the energy of the first cycle of 0.20 J, the performance index (the percentage of true predictions) was almost 80%, and the area under the ROC curve was 0.823 (maximum value is 1). When including the mean thickness in the selection parameters, as an indirect measure of the specimen mass, the performance index grew over 95%, meaning that the error of the predictions was less than 5%. Combining both parameters in one, a high performance index is maintained at 87.5% and the area under the ROC curve increases to 0.917. This non-destructive method should help optical methods in the process of selecting the most appropriate and homogenous biological material.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.31732DOI Listing

Publication Analysis

Top Keywords

energy dissipated
8
area roc
8
roc curve
8
optimal selection
4
selection biological
4
biological tissue
4
tissue energy
4
dissipated loading
4
cycle
4
loading cycle
4

Similar Publications

Radiative Cooling Meta-Fabric Integrated with Knitting Perspiration-Wicking and Coating Heat Conduction.

ACS Nano

January 2025

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.

View Article and Find Full Text PDF

To study the enhancement effect of carbon nanotubes (CNTs) on the splitting tensile properties of foamed concrete backfill in which cement and fly ash were used as the cementitious materials and natural sand was used as the aggregate, specimens of CNT-modified foamed concrete backfill were prepared. Brazilian splitting tests were used to investigate the splitting tensile strength of the CNT-modified foamed concrete backfill, and the digital speckle correlation method was used to analyze the stress field characteristics and crack expansion law of the specimens during splitting tensile testing. The stress-strain characteristics and energy dissipation laws of the backfill were studied at various static loading rates, and a relationship between the splitting tensile strength, ultimate strain, and loading rate was established.

View Article and Find Full Text PDF

Potato is cultivated all the year round in Pakistan. However, the major crop is the autumn crop which is planted in mid-October and contributes 80-85% of the total production. The abrupt climate change has affected the weather patterns all over the world, resulting in the reduction of the mean air temperature in autumn by almost 1.

View Article and Find Full Text PDF

Two dimensional confinement induced discontinuous chain transitions for augmented electrocaloric cooling.

Nat Commun

January 2025

Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.

Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect.

View Article and Find Full Text PDF

Transforming an ATP-dependent enzyme into a dissipative, self-assembling system.

Nat Chem Biol

January 2025

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.

Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!