In the present study, the cytotoxic effects of five prosthodontic materials on the L929 cell line were assessed by flow cytometry (FCM), reverse transcription PCR (RT-PCR), and MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazoli-umbromide) assay. The cells were treated with eluates resin (RE), pressable ceramics (PC), Co-Cr alloy-porcelain (CC), Ni-Cr alloy-porcelain (NC), and diatomite ceramics (DC). The cytotoxicity of all the materials tested by the MTT assay was grade 1. By FCM analysis, apoptosis rates of DC and PC were low, with no significant difference from the control (p > 0.05). The rest of the groups induced much higher apoptosis rates (p < 0.05), with the highest in the RE group. The necrotic cell levels of RE was also significantly increased (p < 0.05). Bcl-2 and Bax mRNA expression were determined by RT-PCR, and the Bax/Bcl-2 ratio in the DC and PC groups were not significantly different from the control (p > 0.05), whereas CC, NC, and RE groups showed significant differences (p < 0.05). Taken together, the results suggest that FCM and RT-PCR analyses can supplement the traditional MTT assay in evaluating the cytotoxicity of prosthodontic materials for selecting highly biocompatible materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.31723 | DOI Listing |
Curr Microbiol
January 2025
Department of Microbiology and Botany, School of Sciences, J. C. Road, JAIN (Deemed-to-be University), Bangalore, Karnataka, 560027, India.
Endophytic fungi are non-pathogenic organisms that colonise healthy plant tissues asymptomatically. Endophytes derived from medicinal plants are sources for identifying natural products and bioactive compounds with potential uses for industry, medicine, agriculture, and related sectors. In the present study, ethyl acetate crude extracts of four endophytic fungal isolates (CALF1, CALF4, and CASF1) from the medicinal plant Plectranthus amboinicus showed potent antimicrobial activity against the test pathogenic bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis using disc diffusion assays.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan.
Convectional drugs have failed to tackle the increasing public health challenge of Cancer and diabetes. Phytochemical conjugated nanoparticles are providing safer therapeutic alternatives to address this global challenge. Nanoparticles of nickel, iron and zinc are especially useful because of their magnetic properties, abilities to prevent the onset or slow the progression of these diseases.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan, 44000.
Objective: The rise of drug-resistant bacteria, viruses, and fungi has prompted the search for new drugs without cross-resistance to current treatments. As a result, the aim of this research was to synthesize various types of dihydropyrimidinones heterocyclic compounds and screened them for their antibiotic properties.
Methodology: Newly synthesized dihydropyrimidinone derivatives were characterized spectroscopically using proton NMR (HNMR), and FT-IR.
Heliyon
January 2025
Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:
Background: Inflammation is the body's innate reaction to foreign pathogens and serves as a self-regulating mechanism. However, the immune system can mistakenly target the body's own tissues, triggering unnecessary inflammation. For millennia, medicinal plants have been employed for the treatment of diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!