A cDNA encoding pro-opiomelanocortin (POMC) gene was cloned from the pituitary gland of the rare minnow (Gobiocypris rarus), a small freshwater fish endemic to China. This was achieved by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Data showed that the predicted rare minnow POMC (rmPOMC) cDNA consisted of 846bps coding for the following sequences, flanked by proteolytic cleavage sites: signal peptide (SP, Met(1)-Ala(28)), N-terminal peptide (Gln(29)-His(105)), ACTH (Ser(108)-Met(146)), α-MSH (Ser(108)-Gal(121)), CLIP (Pro(126)-Met(146)), β-LPH (Glu(149)-His(221)), γ-LPH (Glu1(49)-Ser(186)), β-MSH (Asp(170)-Ser(186)), and β-endorphin (β-EP, Tyr(189)-Gln(221)). Sequence analysis showed no region was homologous to γ-MSH (a tetrapod POMC feature). The amino acid sequence is highly similar to POMC-I and POMC-II of the common carp (92.4%), according to homologous alignment. It was POMCα through the phylogenetic analysis. Pituitary and extra-pituitary expression were studied using RT-PCR and in situ hybridization. The rmPOMC-positive cells were mainly located in the rostral pars distalis (RPD) and pars intermedia (PI). Some rmPOMC-positive cells were detected in the proximal pars distalis (PPD) as well, according to in situ hybridization. In the extra-pituitary tissues, positive signals were observed in the brain, intestines, gonads, hepatopancreas, spleen, and gills by RT-PCR analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-010-9433-4 | DOI Listing |
Elife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFJ Helminthol
January 2025
Institute of Biology, University of Graz, Universitätsplatz 2, Graz8010, Austria.
Surface flow of freshwater on Adriatic islands is rare due to the extreme permeability of the karst terrain. Hence, most helminthological studies of freshwater fishes in the Adriatic drainage have focused on mainland freshwater systems, while data from islands are scarce. We collected minnow, (Schinz, 1840), specimens in the Suha Ričina stream on Krk Island and screened them for helminth ectoparasites.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physics "G. Occhialini", Università degli Studi di Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy.
Medullary thyroid carcinoma (MTC), a rare neuroendocrine tumor comprising 3-5% of thyroid cancers, arises from calcitonin-producing parafollicular C cells. Despite aggressive behavior, surgery remains the primary curative treatment, with limited efficacy reported for radiotherapy and chemotherapy. Recent efforts have explored the pathogenetic mechanisms of MTC, identifying it as a highly vascularized neoplasm overexpressing pro-angiogenic factors.
View Article and Find Full Text PDFHum Genomics
January 2025
Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.
Background: Congenital anomalies (CAs) encompass a wide spectrum of structural and functional abnormalities during fetal development, commonly presenting at birth. Identifying the cause of CA is essential for accurate diagnosis and treatment. Using a target-gene approach, genetic variants could be found in certain CA patients.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
School of the Environment, Trent University, Peterborough, Canada; Environmental and Life Science graduate program, Trent University, Peterborough, Canada; Department of Chemistry, Trent University, Peterborough, Canada.
The global extraction and use of rare earth elements (REEs) continue to rise as they are implemented in technologies that improve human and environmental livelihoods. However, the general understanding of transfer processes and fates of REEs in aquatic systems remains limited. Here, we aim to determine the REEs' main exposure pathways, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!