An integrated biodiesel process that combines enzymatic esterification and alkaline transesterification is suggested. With focus on the enzymatic step, the paper provides proof of concept and suggestions for further process development. Hence, palm fatty acid distillate (PFAD) has been enzymatically converted to fatty acid methyl esters in a two-step process using the immobilized lipase Novozym 435 in packed-bed columns. With only a small excess of methanol, the first reaction stage could reduce the free fatty acid (FFA) content from 85% to 5%. After removal of water by simple phase separation, it was possible to lower the FFA content to 2.5% in a second reaction stage. Both reaction stages are relatively fast with suggested reaction times of 15 min in column 1 (productivity 10 kg/kg/h) and 30 min in column 2 (productivity 5 kg/kg/h), resulting in 15% FFA after column 1 and 5% FFA after column 2. A lifetime study indicated that approximately 3,500 kg PFAD/kg Novozym 435 can be treated in the first reaction stage before the enzyme has become fully inactivated. With further optimization, the enzymatic process could be a real alternative to today's sulfuric acid catalyzed process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-010-9095-9DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
reaction stage
12
enzymatic esterification
8
alkaline transesterification
8
integrated biodiesel
8
biodiesel process
8
novozym 435
8
ffa content
8
min column
8
column productivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!