We report the formation of highly scattering silver complexes of adenine, deoxyadenosine and 5'-dAMP under alkaline pH conditions in the colloidal silver solutions which are used for surface-enhanced Raman spectroscopy. These complexes, and other pH-dependent phenomena, help to explain the diversity of previously reported adenine SERS spectra. Using conditions which promote complex formation allows nucleotides to be detected at <1 ppm, even in solutions with high salt concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0an00612b | DOI Listing |
Front Physiol
January 2025
Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.
Two-pore channels (TPCs) are adenine nucleotide and phosphoinositide regulated cation channels. NAADP activates and ATP blocks TPCs, while the endolysosomal phosphoinositide PI(3,5)P activates TPCs. TPCs are ubiquitously expressed including expression in the innate as well as the adaptive immune system.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
1,4-Dihydronicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) are essential cofactors required for all living cells, playing pivotal roles in multiple biological processes such as energy metabolism and biosynthesis. NADPH is produced during photosynthesis by the combination of photosystem II, where water is oxidised, and photosystem I, where NADP is reduced. This review focuses on catalytic NAD(P) (and its analogues) reduction to generate 1,4-NAD(P)H without formation of other regioisomers and the dimer.
View Article and Find Full Text PDFBiotechnol Appl Biochem
January 2025
Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
The PnuC gene plays a crucial role in the complex processes related to the absorption and synthesis of the nicotinamide mononucleotide (NMN) precursor. NMN, a nicotinamide adenine dinucleotide (NAD) precursor, is important for cellular energy metabolism, DNA repair, and antiaging. This study focuses on elucidating the precursor absorption mechanism and the specific function of the PnuC gene in encoding membrane transport proteins, as well as its impact on the regulation and dynamics of NMN within the cell.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.
View Article and Find Full Text PDFBiomolecules
December 2024
Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan.
Nicotinamide adenine dinucleotide (NAD) is a critical cofactor in mitochondrial energy production. The NADH/NAD ratio, reflecting the balance between NADH (reduced) and NADoxidized, is a key marker for the severity of mitochondrial diseases. We recently developed a streamlined LC-MS/MS method for the precise measurement of NADH and NAD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!