Netherton syndrome (NS) is a debilitating congenital skin disorder caused by mutations in the SPINK5 gene encoding the lymphoepithelial Kazal-type-related inhibitor (LEKTI). It is characterized by defective keratinization, recurrent infections, and hypernatraemic dehydration with a mortality rate of about 10% in the first year of life. Currently, there are no curative treatments for NS. We have developed a HIV-1 based, self-inactivating lentiviral vector to express SPINK5 in keratinocytes as part of an ex-vivo gene therapy strategy for NS. High transduction efficiency was achieved in NS keratinocytes and reconstitution of LEKTI expression was confirmed in previously deficient cells. These genetically corrected keratinocytes were further tested in an in vitro organotypic culture (OTC) system and in vivo mouse/human skin engraftment model. Results showed correction of epidermal architecture in both OTCs and regenerated skin grafts. Importantly, the results from corrected skin grafts indicated that even where detectable LEKTI expression was restored to a limited numbers of cells, a wider bystander benefit occurred around these small populations. As LEKTI is a secreted protein, the genetically modified graft may provide not only an immediate local protective barrier, but also act as a source of secreted LEKTI providing a generalized benefit following ex-vivo gene therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3034839PMC
http://dx.doi.org/10.1038/mt.2010.201DOI Listing

Publication Analysis

Top Keywords

ex-vivo gene
12
gene therapy
12
skin grafts
12
lekti expression
8
lekti
6
skin
5
therapy restores
4
restores lekti
4
lekti activity
4
activity corrects
4

Similar Publications

Single-nucleotide polymorphism analysis accurately predicts multiple impairments in hippocampal activity and memory performance in a murine model of idiopathic autism.

Sci Rep

January 2025

Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.

Autism spectrum disorder (ASD) comprises alterations in brain anatomy and physiology that ultimately affect information processing and behavior. In most cases, autism is considered idiopathic, involving alterations in numerous genes whose functions are not extensively documented. We evaluated the C58/J mouse strain as an idiopathic model of ASD, emphasizing synaptic transmission as the basis of information processing.

View Article and Find Full Text PDF

In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.

View Article and Find Full Text PDF

Background: Coronary stenting operations have become the main option for the treatment of coronary heart disease. Vessel recovery after stenting has emerged as a critical factor in reducing possible complications. In this study, we evaluated the feasibility, safety and efficacy of locally administered intraluminal gene therapy delivered using a specialized infusion balloon catheter.

View Article and Find Full Text PDF

Introduction: Placental extracellular vesicles (EVs), lipid-enclosed particles released from the placenta, can facilitate intercellular communication and are classified as micro- or nano-EVs depending on size. Placental EVs contain molecules associated with cell proliferation and death. In this study, we investigated whether treating human ovarian tumour explants with placental EVs could induce ovarian tumour cell death.

View Article and Find Full Text PDF

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!