Purpose: This study aimed to characterize the preclinical activity of the first class of combinatorial, mitochondria-targeted, small molecule heat shock protein-90 (Hsp90) inhibitors, gamitrinibs, in models of hormone-refractory, drug-resistant, localized, and bone metastatic prostate cancer in vivo.

Experimental Design: Mitochondrial permeability transition, apoptosis, and changes in metabolic activity were examined by time-lapse videomicroscopy, multiparametric flow cytometry, MTT, and analysis of isolated mitochondria. Drug-resistant prostate cancer cells were generated by chronic exposure of hormone-refractory PC3 cells to the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG). The effect of gamitrinibs on s.c. or intratibial prostate cancer growth was studied in xenograft models. Bone metastatic tumor growth and bone parameters were quantified by micro-computed tomography imaging.

Results: In the NCI 60-cell line screening, gamitrinibs were active against all tumor cell types tested, and efficiently killed metastatic, hormone-refractory, and multidrug-resistant prostate cancer cells characterized by overexpression of the ATP binding cassette transporter P-glycoprotein. Mechanistically, gamitrinibs, but not 17-AAG, induced acute mitochondrial dysfunction in prostate cancer cells with loss of organelle membrane potential, release of cytochrome c, and caspase activity, independently of proapoptotic Bcl-2 proteins Bax and Bak. Systemic administration of gamitrinibs to mice was well tolerated, and inhibited s.c. or bone metastatic prostate cancer growth in vivo.

Conclusions: Gamitrinibs have preclinical activity and favorable safety in models of drug-resistant and bone metastatic prostate cancer in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948625PMC
http://dx.doi.org/10.1158/1078-0432.CCR-10-1818DOI Listing

Publication Analysis

Top Keywords

prostate cancer
32
bone metastatic
16
metastatic prostate
12
cancer cells
12
mitochondria-targeted small
8
small molecule
8
hsp90 inhibitors
8
inhibitors gamitrinibs
8
prostate
8
cancer
8

Similar Publications

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Aims: We aimed to perform a retrospective cohort study using the Centers for Disease Control and Prevention's (CDC's) Wide-Ranging Online Data for Epidemiologic Research (WONDER) database to analyse the trends in cardiovascular disease (CVD)-related mortality in patients with myeloproliferative neoplasms (MPNs) from 1999 to 2020.

Methods And Results: We analysed the death certificate data from the CDC WONDER database from 1999 to 2020 for CVD with co-morbid myeloproliferative disorders in the US population. Age-adjusted mortality rates (AAMRs) and 95% confidence intervals (CIs) were computed per 1 million population by standardizing crude mortality rates to the 2000 US census population.

View Article and Find Full Text PDF

Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.

View Article and Find Full Text PDF

Uncovering the Role of in Prostate Cancer: Insights from Genetic and Expression Analyses.

J Cancer

January 2025

Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.

Biochemical recurrence (BCR) is a critical concern in prostate cancer management; however, its underlying genetic determinants remain poorly understood. The () gene family is involved in cellular detoxification and biosynthetic processes and has been implicated in various cancers. This study investigated the association between the family members and prostate cancer recurrence.

View Article and Find Full Text PDF

Background And Objectives: Prostate cancer is the second most frequently diagnosed cancer in men aged 65 years and older globally. The association of prostate cancer with deranged lipid profile and insulin levels is inconsistent and not well understood. This study aimed to analyze the serum levels of lipids, insulin, insulin-like growth factor-1 (IGF-1) and testosterone and to identify their association with the risk of benign prostatic hyperplasia, prostate cancer and its grading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!