Aims: Remote ischaemic preconditioning (rIPC) protects cardiac and non-cardiac tissues against ischaemic injury. Although there is increased demand to investigate its potential clinical applicability, fundamental mechanisms responsible for rIPC-mediated protection remain unresolved. We examined in isoflurane-anaesthetized dogs whether an intact cardiac nervous system was necessary to mediate rIPC protection against ischaemic injury.
Methods And Results: Dogs were randomly allocated to six groups: 1, control (CON, no-rIPC); 2, rIPC (4 × 5 min renal artery occlusion/reperfusion); 3, autonomic ganglionic blockade with hexamethonium (HEX, no-rIPC; 20 mg/kg iv); 4, HEX + rIPC; 5, cardiac decentralization by surgical ablation of extracardiac nerves (DCN, no-rIPC); and 6, DCN + rIPC. All dogs underwent 60 min coronary occlusion and 180 min reperfusion; cardiac haemodynamic parameters were monitored. Regional blood flow (microspheres) in the heart and kidneys was assessed. Necrotic tissue was visualized using triphenyltetrazolium staining and related to anatomic risk zone size (area at risk; P = NS between groups) and coronary collateral blood flow. Infarct size (% AAR) was 29 ± 5 (mean ± 1 SD) in CON and 15 ± 4 in rIPC dogs (P = 0.001 vs. CON); 24 ± 3 in HEX vs. 12 ± 2 in HEX + rIPC (P = 0.001 vs. HEX); and 20 ± 2 in DCN vs. 12 ± 4 in DCN + rIPC (P = 0.001 vs. DCN). In CON dogs, infarct size was inversely related to coronary collateral flow; this relation was shifted downwards in all groups pre-treated with rIPC.
Conclusion: We report robust myocardial protection by rIPC against ischaemic injury in canines that was not abrogated by either pharmacological or surgical decentralization of cardiac nerves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvq306 | DOI Listing |
Free Radic Biol Med
January 2025
Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China. Electronic address:
Remote ischemic preconditioning (RIPC) induces the expression of unidentified protective cytokines that mitigate lung ischemia-reperfusion injury (LIRI). This study hypothesizes that MOTS-c, a mitokine with potent protective effects against mitochondrial damage, contributes to RIPC-mediated protection by alleviating endothelial barrier dysfunction. In human lung transplantation patients, serum levels of MOTS-c significantly decreased following IR injury but were markedly increased when RIPC was performed prior to transplantation.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, Texas, USA.
Remote Ischemic Preconditioning (RIPC) is a therapy characterized by repeated bouts of limb ischemia and reperfusion. RIPC protects against ischemia-reperfusion injury (IRI), and preclinical studies suggest that this is mediated through release of endogenous opioids. We aimed to interrogate the role of endogenous opioids in RIPC-signaling in humans, using an arm model of IRI.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Anesthesiology, The 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou, China.
Objective: Limb ischemia-reperfusion injury caused by repeated tourniquet application usually leads to acute kidney injury, adversely affecting patient prognosis. This study aimed to investigate the renoprotective effect of remote ischemic preconditioning (RIPC) in patients undergoing extremity surgery with repeated tourniquet application.
Methods: 64 patients were enrolled and randomly divided into an RIPC group and a control group, with 32 patients in each.
Scand J Gastroenterol
January 2025
Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Background: Cholecystectomy often disrupts autonomic balance, impacting recovery. Remote ischemic preconditioning (RIPC) may enhance ANS function and protect organs, but its role in cholecystectomy is unclear.
Methods: In this randomized controlled trial, 80 patients aged 45 to 65 years, scheduled for elective laparoscopic cholecystectomy, were randomly assigned to either the RIPC group or the control group.
Cardiovasc Ther
January 2025
Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
Remote ischemic preconditioning (RIPC) is reported to have early-phase and delayed-phase organ-protective effects. Previous studies have focused on the organ protection of a single RIPC protocol, and the clinical outcomes remain uncertain. Whether the modified RIPC (mRIPC) protocol performed repeatedly provides cardiopulmonary protection is still uncertain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!