We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using ΦC31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998297 | PMC |
http://dx.doi.org/10.1534/genetics.110.121285 | DOI Listing |
Mod Pathol
December 2024
Department of Pathology & Laboratory Medicine, University of California Los Angeles,. Electronic address:
Embryonic-type neuroectodermal tumors (ENTs) arising from testicular germ cell tumors (GCTs) is a relatively common type of somatic transformation in GCTs with poor prognosis and limited therapeutic options, particularly when patients develop disease recurrence or metastasis. Knowledge of key events driving this transformation is limited to the paucity of comprehensive genomic data. We performed a retrospective database search in a CLIA- and CAP-certified laboratory for testicular GCT-derived ENTs that had previously undergone NGS-based comprehensive genomic profiling during the course of clinical care.
View Article and Find Full Text PDFJ Egypt Natl Canc Inst
December 2024
Department of Oncopathology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India.
Objective: Meningiomas are a molecularly ill-defined heterogeneous group of indolent intracranial tumors. Though, WHO grade 1 tumors are histologically benign, sometimes they transform into malignant and may be recurrent which remains always challenging to clinicians. Therefore, the current study sought to discover the clinical relevance of CD44 in meningioma patients.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Charitéplatz 1, 10117 Berlin, Germany.
Background: Intracerebral schwannomas are rare tumors resembling their peripheral nerve sheath counterparts but localized in the CNS. They are not classified as a separate tumor type in the 2021 WHO classification. This study aimed to compile and characterize these rare neoplasms morphologically and molecularly.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Neurological Surgery, University of California, San Francisco, CA, USA.
Single cell genomics has revolutionized our understanding of neuronal cell types. However, scalable technologies for probing single-cell connectivity are lacking, and we are just beginning to understand how molecularly defined cell types are organized into functional circuits. Here, we describe a protocol to generate high-complexity barcoded rabies virus (RV) for scalable circuit mapping from tens of thousands of individual starter cells in parallel.
View Article and Find Full Text PDFInt J Surg Pathol
December 2024
Department of Neurosurgery, Fortis Memorial Research Institute, Gurugram, India.
Isocitrate dehydrogenase (IDH) mutant gliomas are classified as astrocytoma or oligodendroglioma based on the recent application of mutation, mutation, and 1p/19q co-deletion. Astrocytomas classically show and mutations, whereas oligodendrogliomas are defined by 1p/19q co-deletion. However, there are reports of gliomas that harbor both astrocytoma and oligodendroglioma morphologically and molecularly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!