The sperm mitochondria-associated cysteine-rich protein (Smcp) mRNA is transcribed in step 3 spermatids, and is stored in free mRNPs until translation begins ∼6 days later in step 11. To identify sequences that control the timing of Smcp mRNA translation, mutations in both UTRs were analyzed in transgenic mice using green fluorescent protein (GFP), squashes of seminiferous tubules, and quantification of polysomal loading in adult and 21 dpp testes in sucrose and Nycodenz gradients. GFP fluorescence is first detected in step 9 spermatids in lines harboring a transgene containing the Gfp 5' UTR and Smcp 3' UTR. Unexpectedly, this mRNA is stored in large, inactive mRNPs in early spermatids that sediment with polysomes in sucrose gradients, but equilibrate with the density of free mRNPs in Nycodenz gradients. Randomization of the segment 6-38 nt upstream of the first Smcp poly(A) signal results in early detection of GFP, a small increase in polysomal loading in 21 dpp testis, inactivation of the formation of heavy mRNPs, and loss of binding of a Y-box protein. GFP is first detected in step 5 spermatids in a transgene containing the Smcp 5' UTR and Gfp 3' UTR. Mutations in the start codons in the upstream reading frames eliminate translational delay by the Smcp 5' UTR. Collectively, these findings demonstrate that Smcp mRNA translation is regulated by multiple elements in the 5' UTR and 3' UTR. In addition, differences in regulation between Smcp-Gfp mRNAs containing one Smcp UTR and the natural Smcp mRNA suggest that interactions between the Smcp 5' UTR and 3' UTR may be required for regulation of the Smcp mRNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/REP-10-0323 | DOI Listing |
Mol Reprod Dev
March 2016
Department of Biology, University of Massachusetts Boston, Boston, Massachusetts.
Many mRNAs encoding proteins needed for the construction of the specialized organelles of spermatozoa are stored as translationally repressed, free messenger ribonucleoproteins in round spermatids, to be actively translated in elongating and elongated spermatids. The factors that repress translation in round spermatids, however, have been elusive. Two lines of evidence implicate the highly abundant and well-known translational repressor, Y-box protein 2 (YBX2), as a critical factor: First, protamine 1 (Prm1) and sperm-mitochondria cysteine-rich protein (Smcp) mRNAs are prematurely recruited onto polysomes in Ybx2-knockout mouse round spermatids.
View Article and Find Full Text PDFReproduction
January 2015
Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
The protamine 1 (Prm1) and sperm mitochondria-associated, cysteine-rich protein (Smcp) mRNAs exemplify a widespread pattern of mRNA-specific regulation of mRNA translation in post-meiotic spermatogenic cells, spermatids. Both mRNAs are transcribed and initially stored in free-mRNPs in early spermatids, and translated on polysomes in late spermatids. In this study, we demonstrate that the 5' and 3'-UTRs and the 3' terminus of the Smcp 3'-UTR are required for normal repression of the Smcp mRNA in transgenic mice.
View Article and Find Full Text PDFJ Androl
May 2012
Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA.
To facilitate identifying translational control elements by studies of mutations in transgenic mice, a database of orthologous 5' and 3' ends of 12 messenger RNA (mRNA) species from 13 to 23 mammals that undergo delayed translational activation in spermatids was constructed for the Acev2, Akap3, Akap4v2, Gapdhs, Odf1, Prm1, Prm2, Prm3, Smcp, Spata18, Tnp1, and Tnp2 mRNAs. This database, available here, was searched for conserved sequences in conserved positions and known translational control elements. Numerous potential mRNA-specific elements were identified, including upstream open reading frames, conserved sequences upstream and downstream of the poly(A) signal, and noncanonical and multiple poly(A) signals.
View Article and Find Full Text PDFReproduction
December 2010
Cardiovascular Research Center, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114, USA.
The sperm mitochondria-associated cysteine-rich protein (Smcp) mRNA is transcribed in step 3 spermatids, and is stored in free mRNPs until translation begins ∼6 days later in step 11. To identify sequences that control the timing of Smcp mRNA translation, mutations in both UTRs were analyzed in transgenic mice using green fluorescent protein (GFP), squashes of seminiferous tubules, and quantification of polysomal loading in adult and 21 dpp testes in sucrose and Nycodenz gradients. GFP fluorescence is first detected in step 9 spermatids in lines harboring a transgene containing the Gfp 5' UTR and Smcp 3' UTR.
View Article and Find Full Text PDFDev Biol
September 2006
Department of Biology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
The Smcp mRNA encoding the sperm mitochondria-associated cysteine-rich protein is translationally repressed in round spermatids and translationally active in elongated spermatids. The patterns of transcription and translation of fusions of the Smcp promoter, the green fluorescent protein coding region (Gfp) and various combination of the Smcp and Gfp 5' UTR and 3' UTR have been studied in transgenic mice. 518 nt of Smcp 5' flanking region and 8 nt of 5' UTR drive transcription of mRNAs containing the Gfp coding region in early round spermatids at the same transcription start site as the natural Smcp gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!