Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper reported initial findings on the effects of environmental noise and auditory distractions on the performance of mental state classification based on near-infrared spectroscopy (NIRS) signals recorded from the prefrontal cortex. Characterization of the performance losses due to environmental factors could provide useful information for the future development of NIRS-based brain-computer interfaces that can be taken beyond controlled laboratory settings and into everyday environments. Experiments with a hidden Markov model-based classifier showed that while significant performance could be attained in silent conditions, only chance levels of sensitivity and specificity were obtained in noisy environments. In order to achieve robustness against environment noise, two strategies were proposed and evaluated. First, physiological responses harnessed from the autonomic nervous system were used as complementary information to NIRS signals. More specifically, four physiological signals (electrodermal activity, skin temperature, blood volume pulse, and respiration effort) were collected in synchrony with the NIRS signals as the user sat at rest and/or performed music imagery tasks. Second, an acoustic monitoring technique was proposed and used to detect startle noise events, as both the prefrontal cortex and ANS are known to involuntarily respond to auditory startle stimuli. Experiments with eight participants showed that with a startle noise compensation strategy in place, performance comparable to that observed in silent conditions could be recovered with the hybrid ANS-NIRS system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2010.2078516 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!