Convex optimization of coincidence time resolution for a high-resolution PET system.

IEEE Trans Med Imaging

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

Published: February 2011

We are developing a dual panel breast-dedicated positron emission tomography (PET) system using LSO scintillators coupled to position sensitive avalanche photodiodes (PSAPD). The charge output is amplified and read using NOVA RENA-3 ASICs. This paper shows that the coincidence timing resolution of the RENA-3 ASIC can be improved using certain list-mode calibrations. We treat the calibration problem as a convex optimization problem and use the RENA-3's analog-based timing system to correct the measured data for time dispersion effects from correlated noise, PSAPD signal delays and varying signal amplitudes. The direct solution to the optimization problem involves a matrix inversion that grows order (n(3)) with the number of parameters. An iterative method using single-coordinate descent to approximate the inversion grows order (n). The inversion does not need to run to convergence, since any gains at high iteration number will be low compared to noise amplification. The system calibration method is demonstrated with measured pulser data as well as with two LSO-PSAPD detectors in electronic coincidence. After applying the algorithm, the 511 keV photopeak paired coincidence time resolution from the LSO-PSAPD detectors under study improved by 57%, from the raw value of 16.3 ±0.07 ns full-width at half-maximum (FWHM) to 6.92 ±0.02 ns FWHM ( 11.52 ±0.05 ns to 4.89 ±0.02 ns for unpaired photons).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693485PMC
http://dx.doi.org/10.1109/TMI.2010.2080282DOI Listing

Publication Analysis

Top Keywords

convex optimization
8
coincidence time
8
time resolution
8
pet system
8
optimization problem
8
inversion grows
8
grows order
8
lso-psapd detectors
8
coincidence
4
optimization coincidence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!