In the present work, the capacity of new pro-GSH molecules to increase the intra-macrophage thiol content in vitro and in vivo as well as to shift the immune response to Th1 in ovalbumin (Ova)-sensitized mice were examined. The molecules were the N-butanoyl GSH derivative, GSH-C4, and a pro-drug of N-acetylcysteine (NAC) and beta-mercaptoethylamine (MEA), I-152. In vitro, 2h-incubation with both molecules was found to increase intra-macrophage thiol content; in vivo, Ova-sensitized mice pre-treated by intraperitoneal administration of the pro-GSH molecules showed an increase in plasma anti-Ova IgG2a and IgG2b, characterizing Th1 immune response, and a decrease in IgG1, typical of the Th2 response. Such findings were connected to a shift to a Th1 response also involving splenocyte IFN-γ production as revealed by ELISPOT assay and higher levels of IL-12 in circulation. Although immune responses are in vivo mediated both by dendritic cells and macrophages, the data reported in this paper corroborate the suggestion that the pro-GSH molecules, increasing the intra-cellular thiol pool, modulate the Th1/Th2 balance favouring Th1-type responses and may be employed as Th1-directing adjuvants in new vaccination protocols and as immunomodulators in those diseases where Th1 response patterns are compromised in favour of Th2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2010.09.033DOI Listing

Publication Analysis

Top Keywords

pro-gsh molecules
16
increase intra-macrophage
12
molecules increase
12
intra-macrophage thiol
8
thiol content
8
immune response
8
ova-sensitized mice
8
th1 response
8
molecules
6
th1
5

Similar Publications

Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses.

View Article and Find Full Text PDF

I-152 combines two pro-glutathione (GSH) molecules, namely N-acetyl-cysteine (NAC) and cysteamine (MEA), to improve their potency. The co-drug efficiently increases/replenishes GSH levels in vitro and in vivo; little is known about its mechanism of action. Here we demonstrate that I-152 not only supplies GSH precursors, but also activates the antioxidant kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 (KEAP1/NRF2) pathway.

View Article and Find Full Text PDF

Despite early treatment with antimycobacterial combination therapy, drug resistance continues to emerge. Maintenance of redox homeostasis is essential for Mycobacterium avium (M. avium) survival and growth.

View Article and Find Full Text PDF

Glutathione (GSH) has poor pharmacokinetic properties; thus, several derivatives and biosynthetic precursors have been proposed as GSH-boosting drugs. I-152 is a conjugate of -acetyl-cysteine (NAC) and -acetyl-β-mercaptoethylamine (SMEA) designed to release the parent drugs (i.e.

View Article and Find Full Text PDF

Unlabelled: Injection of the LP-BM5 murine leukemia virus into mice causes murine AIDS, a disease characterized by many dysfunctions of immunocompetent cells. To establish whether the disease is characterized by glutathione imbalance, reduced glutathione (GSH) and cysteine were quantified in different organs. A marked redox imbalance, consisting of GSH and/or cysteine depletion, was found in the lymphoid organs, such as the spleen and lymph nodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!