Release abilities of adenosine diphosphate from phospholipid vesicles with different membrane properties and their hemostatic effects as a platelet substitute.

J Control Release

Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, Tokyo 162-8480, Japan.

Published: December 2010

We have constructed phospholipid vesicles with hemostatic activity as a platelet substitute. The vesicles were conjugated with a dodecapeptide (HHLGGAKQAGDV, H12), which is a fibrinogen γ-chain carboxy-terminal sequence (γ400-411). We have recently exploited these vesicles as a potential drug delivery system by encapsulation of adenosine 5'-diphosphate (ADP) (H12-(ADP)-vesicles). Here we explore the relationship between the ADP release from H12-(ADP)-vesicles with different membrane properties and their hemostatic effects. In total, we prepared five kinds of H12-(ADP)-vesicles with different lamellarities and membrane flexibilities. By radioisotope-labeling, we directly show that H12-(ADP)-vesicles were capable of augmenting platelet aggregation by releasing ADP in an aggregation-dependent manner. The amount of ADP released from the vesicles was dependent on their membrane properties. Specifically, the amount of ADP released increased with decreasing lamellarity and tended to increase with increasing membrane flexibility. Our in vivo results clearly demonstrated that H12-(ADP)-vesicles with the ability to release ADP exert considerable hemostatic action in terms of correcting prolonged bleeding time in a busulphan-induced thrombocytopenic rat model. We propose a recipe to control the hemostatic abilities of H12-(ADP)-vesicles by modulating ADP release based on membrane properties. We believe that this concept will be invaluable to the development of platelet substitutes and other drug carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2010.09.013DOI Listing

Publication Analysis

Top Keywords

membrane properties
16
phospholipid vesicles
8
properties hemostatic
8
hemostatic effects
8
platelet substitute
8
adp release
8
amount adp
8
adp released
8
adp
7
membrane
6

Similar Publications

The aggregation and accumulation of amyloid β 42 (Aβ42) peptides on the surface of brain cells is associated with Alzheimer's disease (AD); however, the underlying molecular mechanisms remain unclear. Herein, we used a unique brain-mimetic open system that continuously flows Aβ42 solution to analyze the initial aggregation and adsorptive nature of Aβ42 at physiological concentrations on the lipid membrane. The open system accelerated the adsorption and dimerization kinetics.

View Article and Find Full Text PDF

Endosaccular flow disruption has emerged as a transformative approach for treating wide-neck intracranial aneurysms, which are characterized by neck diameters exceeding 4 millimeters or dome-to-neck ratios below 2. This review examines the technical specifications and clinical outcomes of major endosaccular devices, including the Woven EndoBridge (WEB) device, the Artisse embolization device, the Medina embolization device, the neck bridging device for bifurcation aneurysms, the polycarbonate urethane membrane-assisted device, the Galaxy saccular endovascular aneurysm lattice, and the Contour Neurovascular System. Analysis of pivotal trials reveals varying degrees of efficacy and safety across platforms.

View Article and Find Full Text PDF

Polyimide (PI)-based gas separation membranes are of great interest in the field of H purification owing to their good thermal stability, chemical stability, and mechanical properties. Among polyimide-based membranes, intrinsically microporous polyimides are easily soluble in common organic solvents, showing great potential for fabricating hollow fiber gas separation membranes. However, based on the solution-diffusion model, improving the free volume or the movability of polymer chains can improve gas permeability, but would result in poor thermal stability.

View Article and Find Full Text PDF

Technologies for studying phase-separated biomolecular condensates.

Adv Biotechnol (Singap)

March 2024

Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, GuangZhou, GuangDong, China.

Biomolecular condensates, also referred to as membrane-less organelles, function as fundamental organizational units within cells. These structures primarily form through liquid-liquid phase separation, a process in which proteins and nucleic acids segregate from the surrounding milieu to assemble into micron-scale structures. By concentrating functionally related proteins and nucleic acids, these biomolecular condensates regulate a myriad of essential cellular processes.

View Article and Find Full Text PDF

Background: von Hippel-Lindau (VHL) hereditary cancer syndrome is caused by mutations in the VHL tumor suppressor gene and is characterized by a predisposition to form various types of tumors, including renal cell carcinomas, hemangioblastomas, and pheochromocytomas. The protein products of the VHL gene, pVHL, are part of an ubiquitin ligase complex that tags hypoxia inducible factor alpha (HIF-α) for proteosomal degradation. pVHL has also been reported to bind to atypical protein kinase C (aPKC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!