TLR2 enhances NADPH oxidase activity and killing of Staphylococcus aureus by PMN.

Immunol Lett

Department of Biomedicine, Division of Infection Biology, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland.

Published: March 2011

Toll-like receptors play an essential role in the detection of invading pathogens. TLR2 is expressed in high concentrations on neutrophils and has been implicated as a critical mediator inducing host antimicrobial defenses against Gram-positive bacteria. Neutrophil responses induced via TLR2 are likely to have important clinical consequences, since Gram-positive organisms, such as Staphylococcus aureus, are an increasingly important source of severe infections. In the present study, we report that TLR2 has a central role in killing of S. aureus by murine PMN via enhancement of NADPH oxidase activity. PMN from TLR2-deficient mice showed a similar inability to kill S. aureus in vitro and under in vivo-like conditions as PMN with a non-functional NADPH oxidase. This defect in killing by TLR2-deficient PMN was not related to phagocytosis but caused by delayed and reduced NADPH oxidase-mediated production of superoxide anion in response to S. aureus and other Gram-positive bacteria. The cause of this was independent of PI3K- and p38 signaling. The TLR2-enhanced induction of superoxide was a defect in proper NADPH oxidase assembly. We hypothesize that early activation of TLR2-signaling may enhance p47(phox) phosphorylation subsequent to phagocytosis-mediated phosphorylation. Summarized, these data demonstrate a novel role of TLR2 in the killing of S. aureus by ensuring a rapid activation of the NADPH oxidase complex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2010.09.007DOI Listing

Publication Analysis

Top Keywords

nadph oxidase
20
oxidase activity
8
staphylococcus aureus
8
gram-positive bacteria
8
killing aureus
8
nadph
6
aureus
6
tlr2
5
oxidase
5
pmn
5

Similar Publications

Sepsis is a life-threatening condition caused by severe infection and often complicates acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) due to the collapse of the oxidative and inflammatory balance induced by microbial pathogens, including lipopolysaccharides (LPS). In sepsis-related ARDS/ALI, NADPH oxidase (NOX) and toll-like receptors (TLR) in neutrophils and macrophages are key players in initiating oxidative and inflammatory imbalances. Although NOX and TLR activation has been linked to carbon monoxide (CO), the mechanism by which CO affects sepsis-related ARDS/ALI through NOX and TLR remains unknown.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.

View Article and Find Full Text PDF

subverts the antioxidant defenses of its amoeba host .

Curr Res Microb Sci

January 2025

Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France.

, the causative agent of Legionnaires' disease, interacts in the environment with free-living amoebae that serve as replicative niches for the bacteria. Among these amoebae, is a natural host in water networks and a model commonly used to study the interaction between and its host. However, certain crucial aspects of this interaction remain unclear.

View Article and Find Full Text PDF

Increased NOX-dependent ROS production and proportionally enhanced antioxidant response in white adipose tissue of male rats.

Arch Endocrinol Metab

January 2025

Universidade Estadual do Ceará Instituto Superior de Ciências Biomédicas Laboratório de Fisiologia Endócrina e Metabolismo FortalezaCE Brasil Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil.

Objective: This study aimed to investigate the redox balance in subcutaneous and retroperitoneal fat pads of male and female Wistar rats.

Materials And Methods: The study analyzed the activity and gene expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, along with the production of NADPH oxidases dependent on HO and gene expression of NOX1, NOX2, and NOX4.

Results: The retroperitoneal fat pad in males compared with females had greater NOX2 and NOX4 expression, along with higher superoxide dismutase activity.

View Article and Find Full Text PDF

Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!