Background And Objective: High MW hyaluronan (HMW HA) as opposed to low MW hyaluronan (LMW HA) has been shown to have anti-inflammatory and anti-apoptotic effects. We hypothesized that treatment with HMW HA would block smoke inhalation lung injury by inhibiting smoke-induced lung inflammation and airway epithelial cell apoptosis.
Methods: Anesthetized, intubated male rats were randomly allocated to either control or smoke inhalation injury groups. Rats were treated with 3-mL subcutaneous normal saline solution (sham) or LMW HA (35 kDa) or HMW HA (1600 kDa) 18 h before exposure to 15 min of cotton smoke (n = 5 each). Rats were also treated post smoke inhalation with 1600 kDa HA by intra-peritoneal injection (3 mL) or intra-tracheal nebulization (200 µL). Lung neutrophil infiltration, airway apoptosis, airway mucous plugging and lung injury were assessed 4 h after smoke inhalation injury.
Results: Rats pretreated with 1600 kDa HA had significantly less smoke-induced neutrophil infiltration, lung oedema, airway apoptosis and mucous plugging. Pretreatment with 35 kDa HA, in contrast, increased smoke-induced neutrophil infiltration and lung injury score. Intra-tracheal administration of a single dose 1600 kDa HA, but not intra-peritoneal injection, significantly improved survival post smoke inhalation.
Conclusions: High MW hyaluronan (1600 kDa) may prove to be a beneficial therapy for smoke inhalation through inhibition of smoke-induced inflammation, lung oedema, airway epithelial cell apoptosis and airway mucous plugging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1843.2010.01829.x | DOI Listing |
Cureus
December 2024
Pulmonology, Piedmont Medical Center, Rock Hill, USA.
A 76-year-old man with a past occupational history as a firefighter and construction worker presented at an urgent care center with signs and symptoms of chronic dry cough, exertional dyspnea, and fatigue. His initial chest X-ray showed interstitial thickening in the middle and lower lobes with pulmonary infiltrates bilaterally. The patient was treated with an outpatient course of antibiotics.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
Background: Advances in imaging technology have enhanced the detection of pulmonary nodules. However, determining malignancy often requires invasive procedures or repeated radiation exposure, underscoring the need for safer, noninvasive diagnostic alternatives. Analyzing exhaled volatile organic compounds (VOCs) shows promise, yet its effectiveness in assessing the malignancy of pulmonary nodules remains underexplored.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria.
Cooking fuels are sources of polychlorinated biphenyls (PCBs), which are persistent in the environment and have detrimental effects on human health. Fifteen PCBs congeners from the smoke of eight (8) commonly used cooking fuels in Nigeria were investigated in this study. Glass fiber filters were used to collect air emissions during the combustion of cooking fuels in a controlled chamber.
View Article and Find Full Text PDFToxics
November 2024
UPIZ Educational and Research Laboratory of Biology-MF-NBU, New Bulgarian University, 1618 Sofia, Bulgaria.
Cadmium (Cd) is a toxic metal primarily found as a by-product of zinc production. Cd was a proven carcinogen, and exposure to this metal has been linked to various adverse health effects, which were first reported in the mid-19th century and thoroughly investigated by the 20th century. The toxicokinetics and dynamics of Cd reveal its propensity for long biological retention and predominant storage in soft tissues.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Nursing Pharmacology and Physiotherapy Department University of Córdoba, Lifestyles Innovation and Health (GA-16) Maimonides Biomedical Research Institute of Córdoba (IMIBIC) Spain, University of Córdoba, Córdoba, Spain.
Background: Chronic obstructive pulmonary disease (COPD) primarily originates from exposure to tobacco smoke, although factors, such as air pollution and exposure to chemicals, also play a role. One of the primary treatments for COPD is oxygen therapy, which helps manage dyspnea and improve survival rates. Mobile health (mHealth) technologies have demonstrated significant potential in monitoring patients with chronic diseases, offering new avenues for enhancing patient care and disease management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!