Ecological niche modeling (ENM) algorithms, Maximum Entropy Species Distribution Modeling (Maxent) and Genetic Algorithm for Rule-set Prediction (GARP), were used to develop models in Iowa for three species of mosquito - two significant, extant West Nile virus (WNV) vectors (Culex pipiens L and Culex tarsalis Coquillett (Diptera: Culicidae)), and the nuisance mosquito, Aedes vexans Meigen (Diptera: Culicidae), a potential WNV bridge vector. Occurrence data for the three mosquito species from a state-wide arbovirus surveillance program were used in combination with climatic and landscape layers. Maxent successfully created more appropriate niche models with greater accuracy than GARP. The three Maxent species' models were combined and the average values were statistically compared to human WNV incidence at the census block group level. The results showed that the Maxent-modeled species' niches averaged together were a useful indicator of WNV human incidence in the state of Iowa. This simple method for creating probability distribution maps proved useful for understanding WNV dynamics and could be applied to the study of other vector-borne diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016929 | PMC |
http://dx.doi.org/10.1673/031.010.11001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!