A series of mononuclear complexes of the type [Pt(Bu(2)cat)(4,4'-R(2)-bipy)] [where Bu(2)cat is the dianion of 3,5-(t)Bu(2)-catechol and R = H, (t)Bu, or C(O)NEt(2)] and analogous dinuclear complexes based on the "back-to-back" bis-catechol ligand 3,3',4,4'-tetrahydroxybiphenyl have been studied in detail in both their ground and excited states by a range of physical methods including electrochemistry, UV/vis/near-IR, IR, and electron paramagnetic resonance spectroelectrochemistry, and time-resolved IR (TRIR) and transient absorption (TA) spectroscopy. Density functional theory calculations have been performed to support these studies, which provide a detailed picture of the ground- and excited-state electronic structures, and excited-state dynamics, of these complexes. Notable observations include the following: (i) for the first time, the lowest-energy catecholate → bipyridine (bpy) ligand-to-ligand charge-transfer (LL'CT) excited states of these chromophores have been studied by TRIR spectroscopy, showing a range of transient bands associated with the bpy radical anion and semiquinone species, and back-electron-transfer occurring in hundreds of picoseconds; (ii) strong electronic coupling between the two catecholate units in the bridging ligand of the dinuclear complexes results in a delocalized, planar (class 3) "mixed-valence" catecholate(2-)/semiquinone(•-) state formed by one-electron oxidation of the bridging ligand; (iii) in the LL'CT excited state of the dinuclear complexes, the bridging ligand is symmetrical and delocalized, whereas the bpy radical anion is localized at one terminus of the complex. This study is the first example of an investigation of excited-state behavior in platinum(II) catecholate complexes, performed with the use of picosecond TRIR and femtosecond TA spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic101344t | DOI Listing |
Chemistry
January 2025
Institute of Science Tokyo, Department of Chemical Science and Engineering, O-okayama, 152-8552, Meguro-ku, JAPAN.
Switching the location of metal atoms or ions in a molecule has been of great interest as a behavior of molecular machines. We describe herein that the reversible metal translocation can be coupled with the ligand-binding/release of organometallic complexes. The two rhodium moieties sandwiched between arylpolyene ligands exhibit metal-assembly and disassembly through reversible migration between the arene site and the olefin site, in response to the association and dissociation of additional ligands.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
A study of the reaction of [Ni(NHC)] synthons with the heterocumulene CS is reported. Nickel complexes of η-(C-S) coordinated CS, [Ni(NHC)(η-CS)] (NHC = IiPr (1a), IiPr (1b)) were obtained from the reaction of CS with precursors of [Ni(NHC)] (NHC = IiPr, IiPr). The result of this reaction critically depends on the NHC employed, as [Ni(IMes)], the complex of the sterically more demanding -aryl substituted NHC IMes, led to formation of the dinuclear complex [{Ni(IMes)(μ-CS)}] (2d).
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste Via L. Giorgieri 1 Trieste 34127 Italy
Electrical performances of a biphenyl-derived amido Schiff base ligand L and its dinuclear Al(iii) complex (complex 1) were investigated in a metal-semiconductor (MS) junction. Electrical studies revealed that complex 1 significantly enhanced the electrical conductivity and improved the characteristics of a Schottky barrier diode (SBD). The - characteristics demonstrated that complexation of ligand L with Al(iii) ion increased the conductivity by two orders of magnitude (conductivity of L = 1.
View Article and Find Full Text PDFDalton Trans
January 2025
CLIC, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Unistra, 4 rue Blaise Pascal, 67000 Strasbourg, France.
Iron-copper complexes have been extensively studied in the search for efficient cytochrome oxidase models. Whereas most dinuclear materials usually focus on fine-tuning the coordination of heme-Fe, this work shows that the coordination of copper in cytochrome oxidase models should be carefully taken into consideration. A β-cyclodextrin dimer was built around a bipyridine linker and combined with Fe-tetraphenylsulfonatoporphyrinate (FeTPPS) to generate a self-assembled hydrosoluble cytochrome oxidase model.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
Herein, we propose to synthesize stereoblock polythioethers through the chain shuttling enantioselective ring-opening polymerization (ROP) of thiiranes. The use of diastereoisomeric dinuclear Cr complexes with optimized steric hindrance allowed the production of polythioethers with both a head-to-tail content and isotacticity of >99%. In particular, the introduction of dithiols enabled the synthesis of stereoblock polythioethers via a chain shuttling process, thus producing sulfhydryl-telechelic polythioethers with tunable thermal properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!