[Fractal features of soil aggregate structure in slope farmland with different de-farming patterns in South Sichuan Province of China].

Ying Yong Sheng Tai Xue Bao

Sichuan Provincial Key Laboratory of Ecological Forestry Engineering, Sichuan Agricultural University, Ya' an 625014, Sichuan, China.

Published: June 2010

By using fractal model, this paper studied the fractal dimension of soil aggregate structure (D) in the slope farmland (CK), its 5-year de-farmed Neosinocalamus affinis plantation (NAP), Bambusa pervariabilis x Dendrocalamopsis oldhami plantation (BDP), Alnus crenastogyne + Neosinocalamus affinis plantation (ANP), and abandoned farmland (AFL) in south Sichuan Province of China, and analyzed the relationships between the D and soil physical and chemical properties. In the de-farmed plantations and abandoned farmland, the contents of > 0.25 mm soil aggregates and water-stable aggregates were increased significantly, compared with those in the slope farmland. The D was 1.377-2.826, being in the order of NAP < BDP < ANP < AFL < CK, and decreased with the increasing contents of > 0.25 mm soil aggregates and water-stable aggregates. Comparing with CK, de-farming increased the soil natural water content, capillary porosity, and contents of soil organic matter, total N, alkali-hydrolysable N, total P, and total K, and decreased soil bulk density, non-capillary porosity, and aeration porosity. There were close relationships between the fractal dimension of soil aggregate structure and the soil physical and chemical properties. All the results suggested that the de-farming of slope farmland was beneficial to the increase of the contents of > 0.25 mm soil aggregates and water-stable aggregates, and the enhancement of soil structure stability. The D could be used as an ideal index to evaluate soil fertility, and planting Neosinocalamus affinis on the de-farming slope farmland was a good measure for the improvement of soil fertility in the research area.

Download full-text PDF

Source

Publication Analysis

Top Keywords

slope farmland
20
soil
14
soil aggregate
12
aggregate structure
12
neosinocalamus affinis
12
contents 025
12
025 soil
12
soil aggregates
12
aggregates water-stable
12
water-stable aggregates
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!