Synthesis and anticonvulsant evaluation of some novel 2,5-disubstituted 1,3,4-thiadiazoles: pharmacophore model studies.

Acta Pol Pharm

Medicinal Chemistry Research Laboratory, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur-495 009, India.

Published: October 2010

A novel series of N'-{5-[(1H-indol-3-ylmethyl)-1,3,4-thiadiazol-2-yl}-N4-(4-substituted benzaldehyde)-semicarbazones, N1-{5-[(1H-indol-3-ylmethyl)-1,3,4-thiadiazol-2-yl}-N4-[1-(4-substituted phenyl)ethanone]-semicarbazones and N1-{5-[(1H-indol-3-ylmethyl)-1,3,4-thiadiazol-2-yl}-N4-[1-(4-substituted phenyl) (phenyl) methanone]-semicarbazones were synthesized and evaluated for their anticonvulsant potential using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPFZ) models. The minimal motor impairment (neurotoxicity) was determined by rotorod test. The results of the present study confirmed the requirements of various structural features of four binding site pharmacophore model for anticonvulsant activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pharmacophore model
8
synthesis anticonvulsant
4
anticonvulsant evaluation
4
evaluation novel
4
novel 25-disubstituted
4
25-disubstituted 134-thiadiazoles
4
134-thiadiazoles pharmacophore
4
model studies
4
studies novel
4
novel series
4

Similar Publications

Protein arginylation mediated by arginyltransferase 1 is a crucial regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with other macromolecules. This enzyme and its targets are of immense interest for modulating cellular processes in diseased states like obesity and cancer. Despite being an important target molecule, no highly potent drug against this enzyme exists.

View Article and Find Full Text PDF

Novel inhibitors of the (VIBVN) NAT protein identified through pharmacophore modeling.

Sci Rep

January 2025

Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266071, China.

Arylamine N-acetyltransferases (NATs, E.C. 2.

View Article and Find Full Text PDF

Background: The rise in the frequency of liver cancer all over the world makes it a prominent area of research in the discovery of new drugs or repurposing of existing drugs.

Methods: This article describes the pharmacophore-based structure-activity relationship (3DQSAR) on the secondary metabolites of Alhagi maurorum to inhibit human liver cancer cell lines Hepatocellular carcinoma (HCC) and hepatoma G2 (HepG2) which represents the molecular level understanding for isolated phytochemicals of Alhagi maurorum. The definite features, such as hydrophobic regions, average shape, and active compounds' electrostatic patterns, were mapped to screen phytochemicals.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

Sulfonium Moieties as Ammonium Bioisosteres: Novel Ligands for the Alpha7 Nicotinic Acetylcholine Receptor.

J Med Chem

January 2025

Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, Milan 20133, Italy.

In the pressing quest of novel treatments for chronic pain, α7 nAChR silent agonists show efficacy as anti-inflammatory modulators and represent a promising strategy. Recent findings reveal that a sulfonium ion can replace the quaternary ammonium nitrogen as an alternative pharmacophore for nAChR silent activation. This study reports the design, synthesis, and electrophysiological evaluation of a new series of sulfonium-based derivatives inspired by the archetypal silent agonist NS6740.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!