We investigated the association of polymorphisms of genes FGB G(-455)A and PROCC(-1654)T with coronary artery disease (CAD) in the Russian population. A total of 1145 patients with CAD diagnose on the basis of clinical studies in cardiological hospitals of Moscow, St. Petersburg, Kazan, Chelyabinsk, Perm, Stavropol and Rostov-on-Don. Supervision term was 1.14 +/- +/- 0.33 years (the maximum term 3.2 years). The group studied do not differ significantly with respect to the distributions of G(-455)A alleles and genotypes. However in case of gene PROC C(-1654)T polymorphism we determined that patients with CAD diagnose and Talleles of PROC gene had unfavorable outcome more often than patients with homozygous C alleles. Survival time from end point from carrier phenotype TT and CTis 2.19 +/- 0.18 r. years against 2.46 +/- 0.16 from carrier phenotype CCgene PROC. The obtained data allows to assume the important role of the genes which are responsible for functioning of system of a hemostasis, in the accelerated formation of failures at the patients who had a coronary syndrome.
Download full-text PDF |
Source |
---|
Proc Natl Acad Sci U S A
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405.
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.
Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria.
Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Background: The microtubule-associated protein tau is the most commonly misfolded protein in neurodegenerative disorders including Alzheimer's disease and other related tauopathies. These neurological illnesses are hypothesized to share a common mechanism of disease progression, where pathogenic aggregates or 'seeds' of the tau protein function as templates promoting misfolding of functional, soluble tau protein. Under this premise, therapeutic strategies that modulate the seeding cascade, have high potential to interfere with the disease process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!