Recent dynamics and condition of coral reefs in the Colombian Caribbean.

Rev Biol Trop

Instituto de Investigaciones Marinas y Costeras INVEMAR, Punta de Betín, Zona Portuaria, Santa Marta, Colombia.

Published: May 2010

Long-term monitoring data provide a basis to recognize changes in coral reef communities and to implement appropriate management strategies. Unfortunately, coral reef dynamics have been poorly documented at any temporal scale in the Southern Caribbean. Through the "National Monitoring System of Coral Reefs in Colombia" (Spanish acronym: SIMAC), we assessed 32 permanent plots at different depth levels in six reefs areas of the Colombian Caribbean from 1998 to 2004. Temporal trends in coral and algal cover were evaluated by repeated measures ANOVA. The model included the effect of depth levels (a fixed effect), monitoring plots (a random effect) as a nested factor within depths, and time (repeated factor). We found high spatial variability in major benthic components. Overall means indicated that algae were the most abundant biotic component in nearly all areas, ranging from 30.3% at Rosario to 53.3% at San Andrés. Live coral cover varied considerably from 10.1% at Santa Marta up to 43.5% at Urabá. Coral and algae cover per se are not always accurate reef indicators and therefore they need supplementary information. Temporal analyses suggested relative stability of coral and algal cover along the study but the causes for the observed trends were rarely identified. A significant decrease (p = 0.042) in coral cover was only identified for some monitoring plots in Tayrona-time x plot (depth level) interaction, and importantly, few coral species explained this trend. Significant increase (p = 0.005) in algal cover was observed over time for most plots in Rosario. Temporal trajectories in algal cover were influenced by depth-significant time x depth interaction-in San Andrés (increase, p = 0.004) and Urabá (decrease, p = 0.027). Algae trends were mainly explained by changes in algal turfs. Monitoring programs must focus on the mechanisms mediating the changes, in particular those concerning coral recovery and reef resilience in the current context of climate change.

Download full-text PDF

Source
http://dx.doi.org/10.15517/rbt.v58i1.20027DOI Listing

Publication Analysis

Top Keywords

algal cover
16
coral
11
coral reefs
8
colombian caribbean
8
coral reef
8
depth levels
8
coral algal
8
monitoring plots
8
san andrés
8
coral cover
8

Similar Publications

The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species.

View Article and Find Full Text PDF

Variable effects of a fire-retardant gradient on seasonal wetland communities.

Ecotoxicology

January 2025

Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA.

Wildfires have become larger and more severe in recent decades. Fire retardant is one of the most common wildfire response tools to protect against loss of life and property. Previous studies have documented various effects of fire retardant, which commonly contains chemicals used in fertilizers, on plant and invertebrate community composition.

View Article and Find Full Text PDF

Identifying the origins of storm fluvial particulate organic carbon (POC) provides information about the hydrological connectivity within the river corridor and the roles of the land-stream interface in the carbon cycle. However, current understanding of storm-induced POC source dynamics is constrained by observations limited in space and time. This study presents a unique approach integrating higher spatial and temporal resolution sampling with a multi-biomarker analysis to better understand POC source dynamics across scales.

View Article and Find Full Text PDF

Unlabelled: Snow algae darken the surface of snow, reducing albedo and accelerating melt. However, the impact of subsurface snow algae (e.g.

View Article and Find Full Text PDF

Coastal eutrophication transforms shallow micro-benthic reef communities.

Sci Total Environ

January 2025

Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.

Article Synopsis
  • Coral reefs worldwide are suffering from coastal eutrophication, leading to decreased coral cover and increased harmful organisms like algae and invertebrates.
  • The study focuses on how micro-benthic communities, specifically foraminifera, diatoms, and bacteria, are influenced by turbidity associated with eutrophication in the Spermonde Archipelago, using environmental DNA analysis.
  • Findings indicate that shallower reef flat communities are much more affected by turbidity than deeper reef slope communities, with foraminifera and diatom ESVs serving as indicators of varying turbidity levels, thus highlighting the influence of local environmental conditions on these micro-benthic communities.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!