Introduction: The biochemical mechanisms by which hyperglycemia causes microvascular disease and neuropathy are poorly understood. Experimental studies have established that oxidative stress is present in diabetic rodents with neuropathy, and that antioxidant therapy is protective. Oxidative stress is also present in human diabetes, but its clinical importance is uncertain.
Material And Methods: We examined several biochemical measures of oxidative stress in 37 patients with recent-onset (less than 2 years) type 1 diabetes annually in a 3-year longitudinal study. We also performed a comprehensive annual evaluation of somatosensory and autonomic nerve function. A total of 41 control subjects were studied.
Results: Malondialdehyde excretion, a measure of lipid peroxidation, was 1.5l ± .1 μmol/g creatinine in the control subjects, but 2.43 ± . 3 in the diabetic patients in year one, 2.39 ± .2 in year two and 1.92 ± .15 in year three, which was different from controls across all years; p < .005. Serum NOx (nitrate and nitric) was 34.0 ± 4.9 μmol/L in the controls, but 52.4 ± 5 in the diabetics in year one, 50.0 ± 5.1 in year two, and 49.0 ± 5.2 in year three, which was different from controls; p < .01. We measured sudomotor function and observed that the poorly controlled diabetic patients had relatively increased sweating above the waist and relatively decreased sweating below the waist, a typical pattern for sympathetic nerve injury. The ratio of sweating above to sweating below the waist was .385 ± .04 in controls, 0.70 ± .14 in diabetic patients in year one, .51 ± .14 in year two and .496 ± .12 in year three (different from controls; p < .01 across all years). Urinary MDA correlated negatively with total sweat (r = -39, p < .01); NOx also correlated negatively with total sweat (r = -.34, p < .025). Abnormalities in the processing of renin (the renin/prorenin ratio), a test of renal sympathetic neurons, was also documented in early type 1 diabetes.
Conclusions: Oxidative stress and excessive serum NOx are associated with sympathetic dysfunction in early type 1 diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10286-010-0084-4 | DOI Listing |
Shock
February 2025
Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
Background: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation.
View Article and Find Full Text PDFArch Physiol Biochem
December 2024
Laboratory of Biochemistry, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia.
To examine the effects of self-paced combined high-intensity interval training and resistance training (HIIT-RT) on oxidative stress, inflammation lipid profile and body composition in people with multiple sclerosis (PwMS). Twenty-three PwMS were randomly assigned to either a control group (CG, n = 12) or a training group (TG, n = 11). The TG performed a 12-week self-paced HIIT-RT (3 times/week).
View Article and Find Full Text PDFPLoS One
January 2025
Wuzhou University, College of Food and Pharmaceutical Engineering, Guangxi, P. R. China.
Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Community Medicine, Vidhyadeep Homoeopathic Medical College and Research Centre, Vidhyadeep University, Anita, Surat, Gujarat, 394110, India.
Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.
View Article and Find Full Text PDFMol Divers
January 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!