Nanoparticles of the [Fe(NH(2)trz)(3)](tosylate)(2) spin crossover complex of 3-4 nm size were synthesized and dispersed in a nonionic surfactant. This colloidal system exhibits thermal spin crossover phenomena associated with a virtually first order transition. By thermal treatment the colloidal suspension can be transformed into a fibrous structure forming a gel.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cc02606aDOI Listing

Publication Analysis

Top Keywords

spin crossover
12
crossover phenomena
8
cooperative spin
4
phenomena [fenh2trz3]tosylate2
4
[fenh2trz3]tosylate2 nanoparticles
4
nanoparticles nanoparticles
4
nanoparticles [fenh2trz3]tosylate2
4
[fenh2trz3]tosylate2 spin
4
crossover complex
4
complex 3-4
4

Similar Publications

Superdiffusion is surprisingly easily observed even in systems without the integrability underpinning this phenomenon. Indeed, the classical Heisenberg chain-one of the simplest many-body systems, and firmly believed to be nonintegrable-evinces a long-lived regime of anomalous, superdiffusive spin dynamics at finite temperature. Similarly, superdiffusion persists for long timescales, even at high temperature, for small perturbations around a related integrable model.

View Article and Find Full Text PDF

Landau-Zener tunneling, which describes the transition in a two-level system during a sweep through an anti-crossing, is a model applicable to a wide range of physical phenomena. Realistic quantum systems are affected by dissipation due to coupling to their environments. An important aspect of understanding such open quantum systems is the relative energy scales of the system itself and the system-environment coupling, which distinguishes the weak- and strong-coupling regimes.

View Article and Find Full Text PDF

Permanent Electride Magnets Induced by Quasi-Atomic Non-Nucleus-Bound Electrons.

Adv Mater

January 2025

Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Article Synopsis
  • Interstitial quasi-atomic electrons (IQEs) significantly influence the magnetism of crystalline electrides, with their own magnetic moments affected by nearby cations.
  • Weak spin-orbit coupling and limited interactions prevent these systems from achieving hard magnetism, presenting a challenge for stronger magnetic properties.
  • However, certain 2D electrides, like [ReC]·2e, exhibit permanent magnetism by creating a ferrimagnetic state and demonstrate high coercivity due to the interaction between Re-spin and IQE-spin lattices.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores the connection between d-wave superconductivity and stripe phases in high-temperature cuprate superconductors, revealing how anisotropic couplings can enhance critical temperatures.
  • Recent advancements in quantum simulators using ultracold atoms allow for the experimentation and observation of these phenomena in real-time at a detailed level.
  • The research presents evidence of stripe formation in a cold-atom Fermi-Hubbard simulator, showing attractive correlations between dopants and suggesting the presence of a precursor to the stripe phase, which involves complex charge and spin ordering.
View Article and Find Full Text PDF

Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!