A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionssjirglgql79tb1lnn7iuq1gtfo5tt7l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetics of iron oxidation upon polyphenol binding. | LitMetric

Polyphenol prevention of iron-mediated DNA damage occurs primarily through iron binding. Once bound, iron in the Fe(2+)-polyphenol complex autooxidizes to Fe(3+) in the presence of O(2). To determine the correlation between the rate of Fe(2+)-polyphenol autooxidation and polyphenol antioxidant ability, kinetic studies at pH = 6.0 in the presence of oxygen were performed using UV-vis spectrophotometry. Initial rates of iron-polyphenol complex oxidation for epigallocatechin gallate (EGCG), methyl-3,4,5-trihydroxybenzoate (MEGA), gallic acid (GA), epicatechin (EC), and methyl-3,4-dihydroxybenzoate (MEPCA) were in the range of 0.14-6.7 min(-1). Polyphenols with gallol groups have faster rates of iron oxidation than their catechol analogs, suggesting that stronger iron binding results in faster iron oxidation. Concentrations of polyphenol, Fe(2+), and O(2) were varied to investigate the dependence of the Fe(2+)-polyphenol autooxidation on these reactants for MEGA and MEPCA. For these analogous gallate and catecholate complexes of Fe(2+), iron oxidation reactions were first order in Fe(2+), polyphenol, and O(2), but gallate complexes show saturation behavior at much lower Fe(2+) concentrations. Thus, gallol-containing polyphenols promote iron oxidation at a significantly faster rate than analogous catechol-containing compounds, and iron oxidation rate also correlates strongly with polyphenol inhibition of DNA damage for polyphenol compounds with a single iron-binding moiety.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0dt00752hDOI Listing

Publication Analysis

Top Keywords

iron oxidation
24
dna damage
8
iron
8
iron binding
8
fe2+-polyphenol autooxidation
8
oxidation
7
polyphenol
7
kinetics iron
4
oxidation polyphenol
4
polyphenol binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!