Variability of postsynaptic responses depends non-linearly on the number of synaptic inputs.

Neurocomputing (Amst)

Computational Neurobiology Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA 92037 USA.

Published: June 2003

A conductance-based model for synaptic transmission and postsynaptic integration reveals how postsynaptic responses and their variability depend on the number of synaptic inputs. With increasing number of balanced stochastic excitatory and inhibitory inputs, the postsynaptic responses and their variance first increase and then decrease again. This non-linearity can be attributed to an anti-correlation between the total excitatory and inhibitory currents. The anti-correlation, which occurs even though the conductances of the individual synapses vary independently of each other, is determined by the total synaptic conductance and grows with the number of inputs. As the number of inputs increases, the membrane potential comes increasingly closer to the resting level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944257PMC
http://dx.doi.org/10.1016/S0925-2312(02)00797-XDOI Listing

Publication Analysis

Top Keywords

postsynaptic responses
12
number synaptic
8
synaptic inputs
8
excitatory inhibitory
8
number inputs
8
number
5
inputs
5
variability postsynaptic
4
responses depends
4
depends non-linearly
4

Similar Publications

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

Organisms continually tune their perceptual systems to the features they encounter in their environment . We have studied how ongoing experience reorganizes the synaptic connectivity of neurons in the olfactory (piriform) cortex of the mouse. We developed an approach to measure synaptic connectivity , training a deep convolutional network to reliably identify monosynaptic connections from the spike-time cross-correlograms of 4.

View Article and Find Full Text PDF

Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: implicating core fucosylation has an antidepressant potential.

J Biol Chem

January 2025

Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:

Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8) and heterozygous KO (Fut8) mice contrasted to the wild-type (Fut8) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!