Aim: To examine whether danshensu could protect vascular endothelia in a rat model of hyperhomocysteinemia.

Methods: The model was established by feeding rats with a methionine-rich diet (1 g·kg⁻¹·d⁻¹) for 3 months. Immediately following the discontinuation of methionine-rich diet, rats were treated with danshensu (67.5 mg·kg⁻¹·d⁻¹, po) or saline for 3 additional months. One group of rats receiving vitamin mixture (folic acid, vitamin B12 and vitamin B6) was included as a positive control. One group of rats not exposed to methionine-rich diet was also included as a blank control. The expression of tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecule-1 (ICAM-1) protein in the descending aorta was examined using immunohistochemistry and Western blot. Homocysteine and blood concentration of endothelin and nitric oxide (NO) was also examined.

Results: Methionine-rich diet resulted in accumulation of "foam cells", up-regulated expression of TNF-alpha and ICAM-1 in the descending aorta, and significantly increased serum homocysteine. Plasma endothelin concentration was significantly increased; NO was decreased. Danshensu treatment, either simultaneous to methionine-rich diet or afterwards, attenuated the above mentioned changes.

Conclusion: Chronic treatment with danshensu could prevent/attenuate the formation of atherosclerosis. Potential mechanisms include inhibited expression of representative proinflammatory cytokines and adhesion molecules in arterial endothelia. Changes in homocysteine and circulating molecules that control vascular contraction/relaxation via endothelial cells (eg, endothelin and NO) were also implicated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085698PMC
http://dx.doi.org/10.1038/aps.2010.167DOI Listing

Publication Analysis

Top Keywords

methionine-rich diet
20
vascular endothelia
8
endothelia rat
8
rat model
8
group rats
8
descending aorta
8
danshensu
5
methionine-rich
5
diet
5
danshensu protects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!