Next generation sequencing has already been used for genomic analysis of microorganis, human being, animals, and plants. Sample preparation is prerequisite and most important for large-scale sequencing. There are two major interferences for large-scale sequencing, polyA and abundant genes' concealment for rare genes. In order to solve these problems, we used total RNA extracted from violaceae leaves to produce double stranded cDNA. DSN nuclease was used to treat the ds cDNA prior to removing the polyA. Randomly sequencing 100 clones of the treated cDNA showed that there were 94 independent clones in the treated sample, and the sequences did not contained polyA. However, only 62 independent clones were found in the untreated sample, and 15 of the sequencing files were affected by polyA. By randomly sequencing of the treated cDNA, we also found two clones encoded two interested genes. We failed to isolate these genes although the protein mass peaks of them had been found in the MALDI-TOF trace. Furthermore, we designed primers from two known genes with different expression abundances. The PCR yields were approaching similar using the treated cDNAs as templates. These results showed that, removal of the polyA and enrichment of rare genes with DSN can meet the requirements of large-scale sequencing and discovery of new genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3724/sp.j.1005.2010.00974 | DOI Listing |
Background The role of specific human leukocyte antigen (HLA) alleles as a risk factor for susceptibility, protection, and response to cyclophosphamide (CYC) treatment has been studied in patients with idiopathic nephrotic syndrome (INS). This study investigates the association of class II HLA alleles and the treatment outcome in children with steroid-dependent nephrotic syndrome (SDNS) who were treated with CYC. Methods A total of 77 children who were diagnosed with SDNS and had received CYC at least a year before were enrolled.
View Article and Find Full Text PDFFront Microbiol
January 2025
Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
Introduction: Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden.
Many Plasmodium genes remain uncharacterized due to low genetic tractability. Previous large-scale knockout screens have only been able to target about half of the genome in the more genetically tractable rodent malaria parasite Plasmodium berghei. To overcome this limitation, we have developed a scalable CRISPR system called P.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
Human mitochondrial DNA (mtDNA) harbors essential mutations linked to aging, neurodegenerative diseases, and complex muscle disorders. Due to its uniparental and haploid inheritance, mtDNA captures matrilineal evolutionary trajectories, playing a crucial role in population and medical genetics. However, critical questions about the genomic diversity patterns, inheritance models, and evolutionary and medical functions of mtDNA remain unresolved or underexplored, particularly in the transition from traditional genotyping to large-scale genomic analyses.
View Article and Find Full Text PDFNature
January 2025
deCODE genetics/Amgen Inc., Reykjavik, Iceland.
Human recombination maps are a valuable resource for association and linkage studies and crucial for many inferences of population history and natural selection. Existing maps are based solely on cross-over (CO) recombination, omitting non-cross-overs (NCOs)-the more common form of recombination-owing to the difficulty in detecting them. Using whole-genome sequence data in families, we estimate the number of NCOs transmitted from parent to offspring and derive complete, sex-specific recombination maps including both NCOs and COs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!