A deeper understanding of how the physical properties of particles regulate specific biological responses is becoming a crucial requirement for their successful biomedical application. To provide insights on their design and application, J774A.1 cells are exposed to particles with different diameters (430 nm, 1.9 μm and 4.8 μm), and the size effects on a series of cellular responses in macrophages are evaluated. Cellular uptake study demonstrates that nanosized particles accumulate in the cells at a faster rate, and with a higher surface area. Once the data are converted into the expression of particle volume, the maximum value is found with 1.9 μm particles instead of nanoparticles. Moreover, the uptake intermediates are also trapped, and the steps of particle internalization include filopodia sensing, skeleton rearrangement, and morphology change. Subsequent cellular trafficking reveals that only nanosized particles transport via lysosomal pathway, which is consistent with their uptake mechanisms. Furthermore, nanosized particles prefer to promote the secretion of Th1-specific molecule signals (e.g. IFN, IL-12) rather than immune suppressors. All these results, along with a couple of surprises, are discussed in the view of clinical practice. They are expected, in principle, to establish the basis of new design concepts for particle-based biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2010.09.006 | DOI Listing |
Small
January 2025
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan.
Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.
View Article and Find Full Text PDFInt J Pharm
January 2025
Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
Extracellular vesicles (EVs) are nanosized lipid bilayer particles released by various cellular organisms that carry an array of bioactive molecules. EVs have diagnostic potential, as they play a role in intercellular interspecies communication, and could be applied in drug delivery. In contrast to mammalian cell-derived EVs, the study of EVs from bacteria, particularly Gram-positive bacteria, received less research attention.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
A magnetic-biopolymer composite of carboxymethyl cellulose (CMC), designated as FeO@CMC, was synthesized featuring remarkable stability and an active surface with a green biosynthetic method. This composite was engineered to serve as a substrate for stabilizing silver nanoparticles (Ag NPs) with enhanced functional properties. The catalytic efficacy of the nanocatalyst, incorporating Ag NPs at concentrations of 3%, 7%, and 10%, was evaluated for the reduction of the toxic compound 4-nitrophenol to the beneficial 4-aminophenol.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Chemical and Biological Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
Inefficient endosomal escape has been regarded as the main bottleneck for intracellular nucleic acid delivery. While most research efforts have been spent on designing various nano-sized particles, we took a different path here, investigating micron-sized carriers for direct cytosol entry. Using the spontaneous co-assembly of mRNA and the designer 27 amino acid oligopeptide named pepMAX2, micron-sized co-assemblies were obtained with various sizes by altering the concentration of NaCl salt and time for pre-incubation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!