Understanding the intracellular trafficking of nanoparticles internalized by mammalian cells is a critical issue in nanomedicine, intimately linked to therapeutic applications but also to toxicity concerns. While the uptake mechanisms of carbon nanotubes and polymeric particles have been investigated fairly extensively, there are few studies on the migration and fate of protein-only nanoparticles other than natural viruses. Interestingly, protein nanoparticles are emerging as tools in personalized medicines because of their biocompatibility and functional tuneability, and are particularly promising for gene therapy and also conventional drug delivery. Here, we have investigated the uptake and kinetics of intracellular migration of protein nanoparticles built up by a chimerical multifunctional protein, and functionalized by a pleiotropic, membrane-active (R9) terminal peptide. Interestingly, protein nanoparticles are first localized in endosomes, but an early endosomal escape allows them to reach and accumulate in the nucleus (but not in the cytoplasm), with a migration speed of 0.0044 ± 0.0003 μm/s, ten-fold higher than that expected for passive diffusion. Interestingly, the plasmatic, instead of the nuclear membrane is the main cellular barrier in the nuclear way of R9-assisted protein-only nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2010.08.065 | DOI Listing |
J Gastroenterol
January 2025
Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and exhibits a limited response to apoptosis-dependent chemotherapeutic drugs (e.g., gemcitabine, Gem).
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
Chronic wounds significantly contribute to disability and affect the mortality rate in diabetic patients. In addition, pressure ulcers, diabetic foot ulcers, arterial ulcers, and venous ulcers pose a significant health burden due to their associated morbidity and death. The complex healing process, environmental factors, and genetic factors have been identified as the rate-limiting stages of chronic wound healing.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Egypt.
Monoclonal antibodies (mAbs) are a key class of biotherapeutic medicines used to treat a wide range of diseases, such as cancer, infectious diseases, autoimmune disorders, cardiovascular diseases, and hemophilia. They can be engineered for greater effectiveness and specific applications while maintaining their structural elements for immune targeting. Traditional immunoglobulin treatments have limited therapeutic uses and various adverse effects.
View Article and Find Full Text PDFJ Fish Dis
January 2025
Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
White tail disease in Macrobrachium rosenbergii is caused by M. rosenbergii nodavirus (MrNV) infection, resulting in up to 100% mortality in larvae and post-larvae stages, severely impacting aquaculture production. Existing genome-based detection methods for MrNV are costly and time-consuming, highlighting the need for rapid and cost-effective diagnostic tests.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Methicillin-resistant (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!