All metazoans use insulin to control energy metabolism, but they secrete it from different cells: neurons in the central nervous system in invertebrates and endocrine cells in the gut or pancreas in vertebrates. Despite their origins in different germ layers, all of these insulin-producing cells share common functional features and gene expression patterns. In this study, we tested the role in insulin-producing cells of the vertebrate homologues of Dachshund, a transcriptional regulator that marks the earliest committed progenitors of the neural insulin-producing cells in Drosophila. Both zebrafish and mice expressed a single dominant Dachshund homologue in the pancreatic endocrine lineage, and in both species loss of this homologue reduced the numbers of all islet cell types including the insulin-producing β-cells. In mice, Dach1 gene deletion left the pancreatic progenitor cells unaltered, but blocked the perinatal burst of proliferation of differentiated β-cells that normally generates most of the β-cell mass. In β-cells, Dach1 bound to the promoter of the cell cycle inhibitor p27Kip1, which constrains β-cell proliferation. Taken together, these data demonstrate a conserved role for Dachshund homologues in the production of insulin-producing cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997432PMC
http://dx.doi.org/10.1016/j.ydbio.2010.09.007DOI Listing

Publication Analysis

Top Keywords

insulin-producing cells
16
dachshund homologues
8
conserved role
8
islet cell
8
cells
7
insulin-producing
5
dachshund
4
homologues play
4
play conserved
4
role islet
4

Similar Publications

Insulin plays a key role in metabolic homeostasis. insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings.

View Article and Find Full Text PDF

Developments in basic stem cell biology have paved the way for technology translation in human medicine. An exciting prospective use of stem cells is the ex vivo generation of hepatic and pancreatic endocrine cells for biomedical applications. This includes creating novel models 'in a dish' and developing therapeutic strategies for complex diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetes.

View Article and Find Full Text PDF

Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group.

J Clin Med

January 2025

Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium.

Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta-cells, leading to lifelong insulin dependence. This review explores the current understanding of T1D pathogenesis, clinical progression, and emerging therapeutic approaches. We examined the complex interplay between genetic predisposition and environmental factors that could trigger the autoimmune response as well as the immunological mechanisms involved in beta-cell destruction.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease that leads to the progressive destruction of insulin-producing β cells, resulting in lifelong insulin dependence and a range of severe complications. Beyond conventional glycemic control, innovative therapeutic strategies are needed to address the underlying disease mechanisms. Recent research has highlighted gamma-aminobutyric acid (GABA) as a promising therapeutic target for T1D due to its dual role in modulating both β cell survival and immune response within pancreatic islets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!