A common approach towards developing immunoassays is to attach antibodies onto the surfaces of assay devices via a solid support. When directly adsorbed onto surfaces, however, antibodies generally adopt random orientations and therefore, often fail to exhibit their immunoaffinity. To preserve the antigen-binding activity of antibodies, there is an urgent need to develop specific and novel linking chemistries for attaching the antibodies to the solid surfaces in an oriented manner. In this paper, we report 2 alternative immobilization methods to enhance the orientation of antibodies onto screen-printed graphite electrodes (SPGEs). The first approach involves the deposition of gold nanoparticles (AuNPs) onto the SPGE and subsequent adsorption of monovalent half-antibody (monoAb) fragments of the anti-biotin antibody via Au-thiol bonds. For the second technique, we exploited the affinity of boronic acid towards sugar moieties by preparing a boronic acid-presenting SPGE surface to interact with the carbohydrate unit of this anti-biotin antibody. Using such approaches, we prepared an ultrasensitive electrochemical immunosensor, possessing a maximized epitope density, for the detection of biotin at concentrations as low as 0.19pg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2010.08.048DOI Listing

Publication Analysis

Top Keywords

ultrasensitive electrochemical
8
detection biotin
8
boronic acid
8
anti-biotin antibody
8
antibodies
5
electrochemical detection
4
biotin electrically
4
electrically addressable
4
addressable site-oriented
4
site-oriented antibody
4

Similar Publications

Preparation of CHS-FeO@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin.

Mikrochim Acta

January 2025

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.

A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to  its ultra-thin hollow layer.

View Article and Find Full Text PDF

Ultrasensitive electrochemical detection of gallic acid in beverages based on nitrogen-doped multi-walled carbon nanotube networks embellished with cobalt 2-methylimidazole nanoparticles.

Food Chem

January 2025

Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:

This work presents a convenient and easy-to-operate method for synthesizing the functionally integrated nanocomposite of nitrogen-doped multi walled carbon nanotube networks (N-CNTs) and cobalt 2-methylimidazole (ZIF-67) nanoparticles. The N-CNTs@ZIF-67 nanocomposite was utilized to design a novel electrochemical sensing platform for detecting gallic acid (GA). The N-CNTs@ZIF-67 modified glass carbon electrode (GCE) demonstrated high sensitivity for GA electrochemical detection (LOD: 10.

View Article and Find Full Text PDF

As an emerging ionic sensor with low-voltage operation (<1 V), biocompatibility, and stable operation in aqueous environments, organic electrochemical transistors (OECTs) have attracted significant research interest for various biofluid-related ion detection, where minor ion concentration variations can effectively reflect health or pathology states. However, OECT-based ion sensors are currently limited by restricted device transconductance g and stabilites, which severely hinder their applications in actual ion sensing scenarios. Here, ultra-sensitive multi-ion sensors based on high-performance n-type vertical OECTs (accumulation mode, g = 58 mS) for Na, K, and Ca detection in a practical biofluid (effluent from continuous renal replacement therapy), are demonstrated with high accuracy and stability, which are comparable to conventional Roche method.

View Article and Find Full Text PDF

This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.

View Article and Find Full Text PDF

Highly sensitive and catalytic electrochemical aptamer-based biosensor for β-lactoglobulin via coupling redox recycling background minimization with DNAzyme amplification.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.

Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!