Three-dimensional stochastic cooling in the relativistic heavy ion collider.

Phys Rev Lett

BNL 911B, Upton, New York 11973, USA.

Published: August 2010

Three-dimensional stochastic cooling of 100  GeV/nucleon gold beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). We discuss the physics and technology of the cooling systems and present results with a beam. A factor of 2 increase in luminosity was achieved and another factor of 2 is expected.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.105.094801DOI Listing

Publication Analysis

Top Keywords

three-dimensional stochastic
8
stochastic cooling
8
relativistic heavy
8
heavy ion
8
ion collider
8
cooling relativistic
4
collider three-dimensional
4
cooling 100  gev/nucleon
4
100  gev/nucleon gold
4
gold beams
4

Similar Publications

In this paper, the unified approach is used in acquiring some new results to the coupled Maccari system (MS) in Itô sense with multiplicative noise. The MS is a nonlinear model used in hydrodynamics, plasma physics, and nonlinear optics to represent isolated waves in a restricted region. We provide new results with complicated structures to this model, including hyperbolic, trigonometric and rational function solutions.

View Article and Find Full Text PDF

Mixed affective states in bipolar disorder (BD) is a common psychiatric condition that occurs when symptoms of the two opposite poles coexist during an episode of mania or depression. A four-dimensional model by Goldbeter (Progr Biophys Mol Biol 105:119-127, 2011; Pharmacopsychiatry 46:S44-S52, 2013) rests upon the notion that manic and depressive symptoms are produced by two competing and auto-inhibited neural networks. Some of the rich dynamics that this model can produce, include complex rhythms formed by both small-amplitude (subthreshold) and large-amplitude (suprathreshold) oscillations and could correspond to mixed bipolar states.

View Article and Find Full Text PDF

Resolving the three-dimensional structure of transition metal oxide nanoparticles (TMO-NPs), upon self-restructuring from solution, is crucial for tuning their structure-functionality. Yet, this remains challenging as this process entails complex structure fluctuations, which are difficult to track experimentally and, hence, hinder the knowledge-driven optimization of TMO-NPs. Herein, we combine high-energy synchrotron X-ray absorption and X-ray total scattering experiments with atomistic multiscale simulations to investigate the self-restructuring of self-assembled Co-NPs from solution under dark or photocatalytic water oxidation conditions at distinct reaction times and atomic length-scales.

View Article and Find Full Text PDF

In the realm of epidemiology, it is essential to accurately assess epidemic phenomena through the adoption of innovative techniques that yield reliable predictions. This article introduces an advanced method that merges the Extended Kalman Filter approach with recursive algorithms to compute critical stochastic attributes important for evaluating epidemics. A new three-dimensional discrete Markov process is presented, according to which the total number of infections, deaths, and the duration of epidemic outbreaks are estimated.

View Article and Find Full Text PDF

Eddy-resolving turbulence simulations are essential for understanding and controlling complex unsteady fluid dynamics, with significant implications for engineering and scientific applications. Traditional numerical methods, such as direct numerical simulations (DNS) and large eddy simulations (LES), provide high accuracy but face severe computational limitations, restricting their use in high-Reynolds number or real-time scenarios. Recent advances in deep learning-based surrogate models offer a promising alternative by providing efficient, data-driven approximations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!