Multichannel molecular high-order harmonic generation from asymmetric diatomic molecules.

Phys Rev Lett

Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebéc J1K 2R1, Canada.

Published: August 2010

Multichannel molecular high-order harmonic generation (MHOHG) from a single electron asymmetric molecular ion HeH2+ is investigated numerically. It is found that considerable resonant excitation occurs by laser induced electron transfer (LIET) to neighboring ions and multiple frequency (fractional-order) harmonics are observed from the excited states shifted by some energy Δ from the main Nω energy harmonics. A time series analysis is used to confirm this MHOHG channel which is created by initial ionization from the excited state prepared by LIET and recombination to the neighboring ion at specific field phases, resulting in interference between recombination pathways from ground and excited states.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.105.093903DOI Listing

Publication Analysis

Top Keywords

multichannel molecular
8
molecular high-order
8
high-order harmonic
8
harmonic generation
8
excited states
8
generation asymmetric
4
asymmetric diatomic
4
diatomic molecules
4
molecules multichannel
4
generation mhohg
4

Similar Publications

Background: Drug response prediction is critical in precision medicine to determine the most effective and safe treatments for individual patients. Traditional prediction methods relying on demographic and genetic data often fall short in accuracy and robustness. Recent graph-based models, while promising, frequently neglect the critical role of atomic interactions and fail to integrate drug fingerprints with SMILES for comprehensive molecular graph construction.

View Article and Find Full Text PDF

Purpose: We aim to perform radiogenomic profiling of breast cancer tumors using dynamic contrast magnetic resonance imaging (MRI) for the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) genes.

Methods: The dataset used in the current study consists of imaging data of 922 biopsy-confirmed invasive breast cancer patients with ER, PR, and HER2 gene mutation status. Breast MR images, including a T1-weighted pre-contrast sequence and three post-contrast sequences, were enrolled for analysis.

View Article and Find Full Text PDF

Near-infrared (NIR) triplet dyes are the cornerstones of cutting-edge biomedical and material applications. The difficulty in rational development of triplet dyes increases exponentially as the absorption wavelength shifts deeper into the NIR range. Although classical H-/J-typed packing of NIR dyes has the potential to enhance intersystem crossing (ISC) compared with that in single-chromophore dyes, the triplet state quantum yields remain limited in such strategy.

View Article and Find Full Text PDF

Nanozymes with Modulable Inhibition Transfer Pathways for Thiol and Cell Identification.

Anal Chem

January 2025

Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.

The elementary mechanism and site studies of nanozyme-based inhibition reactions are ambiguous and urgently require advanced nanozymes as mediators to elucidate the inhibition effect. To this end, we develop a class of nanozymes featuring single Cu-N catalytic configurations and B-O sites as binding configurations on a porous nitrogen-doped carbon substrate (B/Cu) for inducing modulable inhibition transfer at the atomic level. The full redistribution of electrons across the Cu-N sites, induced by B-O sites incorporation, yields B/Cu with enhanced peroxidase-like activity versus Cu.

View Article and Find Full Text PDF

(1) Background: Fetal chromosomal examination is a critical component of modern prenatal testing. Traditionally, maternal serum biomarkers such as free β-human chorionic gonadotropin (Free β-HCG) and pregnancy-associated plasma protein A (PAPPA) have been employed for screening, achieving a detection rate of approximately 90% for fetuses with Down syndrome, albeit with a false positive rate of 5%. While amniocentesis remains the gold standard for the prenatal diagnosis of chromosomal abnormalities, including Down syndrome and Edwards syndrome, its invasive nature carries a significant risk of complications, such as infection, preterm labor, or miscarriage, occurring at a rate of 7 per 1000 procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!