We present a generalization of the next-to-minimal supersymmetric standard model, with an explicit μ term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the minimal supersymmetric standard model (MSSM). Though this model does not address the μ problem of the MSSM, we are able to generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative to the gauge unification scale, and with no need to fine-tune parameters in the scalar potential. This model more closely resembles the MSSM phenomenologically than the canonical next-to-minimal supersymmetric standard model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.105.091802 | DOI Listing |
Phys Rev Lett
July 2024
CERN, Geneva, Switzerland.
Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or Higgsino production decaying via standard model W, Z, or h bosons are combined to extend the mass reach to the produced supersymmetric particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% C.
View Article and Find Full Text PDFPhys Rev Lett
June 2024
CERN, Geneva, Switzerland.
A combination of searches for a new resonance decaying into a Higgs boson pair is presented, using up to 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: bb[over ¯]bb[over ¯], bb[over ¯]τ^{+}τ^{-}, and bb[over ¯]γγ. No excess above the expected Standard Model background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV-5 TeV.
View Article and Find Full Text PDFPhys Rev Lett
May 2024
Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA.
One of the simplest examples of noninvertible symmetries in higher dimensions appears in 4D Maxwell theory, where its SL(2,Z) duality group can be combined with gauging subgroups of its electric and magnetic 1-form symmetries to yield such defects at many different values of the coupling. Even though N=4 supersymmetric Yang-Mills (SYM) theory also has an SL(2,Z) duality group, it only seems to share two types of such noninvertible defects with Maxwell theory (known as duality and triality defects). Motivated by this apparent difference, we begin our investigation of the fate of these symmetries by studying the case of 4D N=4 U(1) gauge theory, which contains Maxwell theory in its content.
View Article and Find Full Text PDFRep Prog Phys
July 2024
Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom.
This is a review article about neutrino mass and mixing and flavour model building strategies based on modular symmetry. After a brief survey of neutrino mass and lepton mixing, and various Majorana seesaw mechanisms, we construct and parameterise the lepton mixing matrix and summarise the latest global fits, before discussing the flavour problem of the Standard Model. We then introduce some simple patterns of lepton mixing, introduce family (or flavour) symmetries, and show how they may be applied to direct, semi-direct and tri-direct CP models, where the simple patterns of lepton mixing, or corrected versions of them, may be enforced by the full family symmetry or a part of it, leading to mixing sum rules.
View Article and Find Full Text PDFPhys Rev E
February 2024
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
We study the average and the standard deviation of the entanglement entropy of highly excited eigenstates of the integrable interacting spin-1/2 XYZ chain away from and at special lines with U(1) symmetry and supersymmetry. We universally find that the average eigenstate entanglement entropy exhibits a volume-law coefficient that is smaller than that of quantum-chaotic interacting models. At the supersymmetric point, we resolve the effect that degeneracies have on the computed averages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!