Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current equation of state (EOS) models for xenon show substantial differences in the Hugoniot above 100 GPa, prompting the need for an improved understanding of xenon's behavior at extreme conditions. We performed shock compression experiments on liquid xenon to determine the Hugoniot up to 840 GPa, using these results to validate density functional theory (DFT) simulations. Despite the nearly fivefold compression, we find that the limiting Thomas-Fermi theory, exact in the high density limit, does not accurately describe the system. Combining the experimental data and DFT calculations, we developed a free-energy-based, multiphase EOS capable of describing xenon over a wide range of pressures and temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.105.085501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!