By using multidimensional particle-in-cell simulations, we present a new regime of stable proton beam acceleration which takes place when a two-ion-species shaped foil is illuminated by a circularly polarized laser pulse. In the simulations, the lighter protons are nearly instantaneously separated from the heavier carbon ions due to the charge-to-mass ratio difference. The heavy ion layer expands in space and acts to buffer the proton layer from the Rayleigh-Taylor-like (RT) instability that would have otherwise degraded the proton beam acceleration. A simple three-interface model is formulated to explain qualitatively the stable acceleration of the light ions. In the absence of the RT instability, the high quality monoenergetic proton bunch persists even after the laser-foil interaction ends.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.105.065002 | DOI Listing |
Phys Imaging Radiat Oncol
October 2024
Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark.
Background And Purpose: Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres.
View Article and Find Full Text PDFAdv Radiat Oncol
February 2025
Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, Virginia.
Purpose: This study evaluates the hypothesis that a volumetric skin-sparing planning technique (SSPT) will reduce acute dermatitis in patients treated to the breast or chest wall (CW) with proton pencil-beam scanning (PBS).
Methods And Materials: In January 2022, our center incorporated volumetric-based skin-sparing objectives in addition to skin hot spot evaluation as an SSPT. The SSPT incorporated an objective to limit the volume of a skin evaluation structure (skin-eval) receiving 95% of the prescription dose or more (V95%Rx) to ideally < 50%.
Int J Radiat Oncol Biol Phys
January 2025
Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. Electronic address:
Purpose/objective(s): While definitive chemoradiation (CRT) with 5-FU/MMC remains the standard of care for localized anal cancer, treatment is associated with significant acute and late toxicity. Proton radiation therapy (RT) may potentially reduce such toxicity. Here, we assess the long-term outcomes of anal cancer patients treated with CRT using proton RT in two prospective pilot studies.
View Article and Find Full Text PDFPhys Med
January 2025
Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands. Electronic address:
Purpose: Proton therapy of moving targets is considered a challenge. At Maastro, we started treating lung cancer patients with proton therapy in October 2019. In this work, we summarise the developed treatment strategies and gained clinical experience from a physics point of view.
View Article and Find Full Text PDFRadiat Oncol
January 2025
The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
Background: Proton beam therapy (PBT) has been gradually introduced for treating choroidal melanoma. This study systematically reviewed clinical reports to evaluate the efficacy and safety of PBT in choroidal melanoma patients.
Methods: This systematic review included all the primary studies involving PBT for choroidal melanoma patients through April 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!