Stochastic thermodynamics and sustainable efficiency in work production.

Phys Rev Lett

University Pierre et Marie Curie-CNRS, LPTMC (UMR 7600), case 121, 75252 Paris Cedex 05, France.

Published: August 2010

We propose a novel definition of efficiency, valid for motors in a nonequilibrium stationary state exchanging heat and possibly other resources with an arbitrary number of reservoirs. This definition, based on a rational estimation of all irreversible effects associated with power production, is adapted to the concerns of sustainable development. Under conditions of maximum power production the new efficiency has for upper bound 1/2 in situations relevant for mesoscopic systems. These results imply that at maximum power bithermal, stationary motors could reach a higher Carnot efficiency than the usual cyclic motors.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.105.060601DOI Listing

Publication Analysis

Top Keywords

power production
8
maximum power
8
stochastic thermodynamics
4
thermodynamics sustainable
4
efficiency
4
sustainable efficiency
4
efficiency work
4
work production
4
production propose
4
propose novel
4

Similar Publications

Technology-critical elements (TCEs) refer to the elements that play an important role in many emerging technologies and the production of advanced materials, and these include lanthanides, tungsten and vanadium. Actinides, Tl, and Pb, which also belong to TCEs, are abundantly used in power generation, industrial applications, and modern agricultural practices. The information on the influence of these elements on the aquatic environment and biota is still rather scarce.

View Article and Find Full Text PDF

In the context of global efforts toward energy transition and carbon neutrality, thermal integrated pumped thermal energy storage (TIPTES) systems, especially those utilizing low-grade heat sources, have garnered significant attention due to their large capacity, flexibility, and environmental advantages. This paper explores a TIPTES system that harnesses industrial waste heat as a heat source. The system's heat pump (HP) subcycle and Organic Rankine Cycle (ORC) subcycle are equipped with regenerators to optimize system configuration and enhance efficiency.

View Article and Find Full Text PDF

The aim of the study was to determine the relationship between slaughter weight (SW) with body components and liner body measurements and investigate the coefficient of correlation between slaughter weight with body component and liner body measurements to select the best regression equation. Data on liner body measurements (height at wither and at hips, heart girth, body length, height and width of hump, height at fall and hind legs, body sheath height, height at hooks, barrel circumference, width of face, length of face and tail circumference) and slaughter weight of body components (Hot Carcass Weight (HCW), Empty Body Weight (ESW), Internal Offal (IO) and External Offal (EO)) were collected from 62 Hararghe cattle at Haramaya University abattoir. ESW was calculated as SW with less gut contents.

View Article and Find Full Text PDF

Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.

Heliyon

January 2025

African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.

The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).

View Article and Find Full Text PDF

As funding for large translational research consortia increases across the National Institutes of Health (NIH), focused working groups provide an opportunity to leverage the power of unique networks to conduct high-impact science and offer a strategy for building collaborative infrastructure to sustain networks long-term. This sustainment leverages the existing NIH investments, amplifying the impact and creating conditions for future innovative translational research. However, few resources exist that detail practical strategies for establishing and sustaining working groups in consortia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!