A three-dimensional phase-field approach to martensitic transformations that uses reaction pathways in place of a Landau potential is introduced and applied to a model of Fe3Ni. Pathway branching involves an unbounded set of variants through duplication and rotations by the rotation point groups of the austenite and martensite phases. Path properties, including potential energy and elastic tensors, are calibrated by molecular statics. Acoustic waves are dealt with via a splitting technique between elastic and dissipative behaviors in a large-deformation framework. The sole free parameter of the model is the damping coefficient associated to transformations, tuned by comparisons with molecular dynamics simulations. Good quantitative agreement is then obtained between both methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.105.035703 | DOI Listing |
Materials (Basel)
January 2025
3D Printing Research and Engineering Technology Center, Beijing Institute of Aeronautical Materials, Beijing 100095, China.
This work investigated the CrNiMo stainless steel using laser selective melting (SLM) technology and explored the effect of the tempering temperature on the microstructure and properties. After the tempering treatment, the quenched martensite transformed from a metastable to steady state, and residual austenite was formed. The results indicated that the elongation of the transverse specimen showed an upward trend as the tempering temperature increased, while the elongation of the longitudinal specimen first increased and then decreased.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China.
The shift fork shaft is a key component in transmissions, connecting the shift fork in order to adjust the gear engagement. This study investigates the effects of different welding sequences on deformation and residual stress during plasma welding of the shift fork shaft. A temperature-displacement coupled finite element method, using ABAQUS simulation software and a double ellipsoid heat source model, was employed for the numerical analysis.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100101, China.
Objective: To compare the cyclic fatigue resistance of nickel-titanium files made by 3 new heat treatment in simulated S-shaped root canals at different temperatures.
Methods: Gold heat-treated nickel-titanium files TruNatomy (25 mm, tip size 26#/0.04) and ProTaper Gold (25 mm, tip size 25#/0.
Phys Chem Chem Phys
January 2025
School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa, India.
NiMnZ (Z = In, Sn or Sb) undergo martensitic transformation with transformation temperature () scaling with the average valence electron per atom (/) ratio. However, the rate of increase of depends on the type of Z atom, with the slope of / curve increasing from Z = In to Z = Sb. Local structural distortions are believed to be the leading cause of martensitic transformation in these alloys.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Material Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China.
W-Mo-V high-speed steel (HSS) is a high-alloy high-carbon steel with a high content of carbon, tungsten, chromium, molybdenum, and vanadium components. This type of high-speed steel has excellent red hardness, wear resistance, and corrosion resistance. In this study, the alloying element ratios were adjusted based on commercial HSS powders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!