Entanglement spectrum of a disordered topological Chern insulator.

Phys Rev Lett

Department of Physics, Yeshiva University, New York, New York 10016, USA.

Published: September 2010

We investigate the behavior of a topological Chern insulator in the presence of disorder, with a focus on its entanglement spectrum (EtS) constructed from the ground state. For systems with symmetries, the EtS was shown to contain explicit information about the topological universality class revealed by sorting the EtS against the conserved quantum numbers. In the absence of any symmetry, we demonstrate that statistical methods such as the level statistics of the EtS can be equally insightful, allowing us to distinguish when an insulator is in a topological or trivial phase and to map the boundary between the two phases. The phase diagram of a Chern insulator is explicitly computed as function of Fermi level (EF) and disorder strength using the level statistics of the EtS and energy spectrum, together with a computation of the Chern number (C) via a new, efficient real-space formula.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.105.115501DOI Listing

Publication Analysis

Top Keywords

chern insulator
12
entanglement spectrum
8
topological chern
8
level statistics
8
statistics ets
8
ets
5
spectrum disordered
4
topological
4
disordered topological
4
chern
4

Similar Publications

Photonic axion insulator.

Science

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties.

View Article and Find Full Text PDF

Emergent Symmetry and Valley Chern Insulator in Twisted Double-Bilayer Graphene.

Phys Rev Lett

December 2024

Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA.

Theoretical calculations show that twisted double bilayer graphene (TDBG) under a transverse electric field develops a valley Chern number 2 at charge neutrality. Using thermodynamic and thermal activation measurements we report the experimental observation of a universal closing of the charge neutrality gap in the Hofstadter spectrum of TDBG at 1/2 magnetic flux per unit cell, in agreement with theoretical predictions for a valley Chern number 2 gap. Our theoretical analysis of the experimental data shows that the interaction energy, while larger than the flat-band bandwidth in TDBG near 1° does not alter the emergent valley symmetry or the single-particle band topology.

View Article and Find Full Text PDF

Measuring bipartite fluctuations of a conserved charge, such as the particle number, is a powerful approach to understanding quantum systems. When the measured region has sharp corners, the bipartite fluctuation receives an additional contribution known to exhibit a universal angle dependence in 2D isotropic and uniform systems. Here we establish that, for generic lattice systems of interacting particles, the corner charge fluctuation is directly related to quantum geometry.

View Article and Find Full Text PDF

Dots and boxes algorithm for Peierls substitution: application to multidomain topological insulators.

J Phys Condens Matter

January 2025

Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70542, Ciudad de México 04510, Mexico.

Magnetic fields can be introduced into discrete models of quantum systems by the Peierls substitution. For tight-binding Hamiltonians, the substitution results in a set of (Peierls) phases that are usually calculated from the magnetic vector potential. As the potential is not unique, a convenient gauge can be chosen to fit the geometry and simplify calculations.

View Article and Find Full Text PDF

Probing ground-state quantum geometry and topology through optical responses is not only of fundamental interest, but it can also offer several practical advantages. Here, using first-principles calculations on thin films of the antiferromagnetic topological insulator MnBiTe, we demonstrate how the generalized optical weight arising from the absorptive part of the optical conductivity can be used to probe the ground-state quantum geometry and topology. We show that three-septuple-layer MnBiTe film exhibit an enhanced, almost-perfect magnetic circular dichroism for a narrow photon energy window in the infrared region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!