Quasiprobabilistic interpretation of weak measurements in mesoscopic junctions.

Phys Rev Lett

Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany.

Published: September 2010

The impossibility of measuring noncommuting quantum mechanical observables is one of the most fascinating consequences of the quantum mechanical postulates. Hence, to date the investigation of quantum measurement and projection is a fundamentally interesting topic. We propose to test the concept of weak measurement of noncommuting observables in mesoscopic transport experiments, using a quasiprobabilistic description. We derive an inequality for current correlators, which is satisfied by every classical probability but violated by high-frequency fourth-order cumulants in the quantum regime for experimentally feasible parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.105.106803DOI Listing

Publication Analysis

Top Keywords

quantum mechanical
8
quasiprobabilistic interpretation
4
interpretation weak
4
weak measurements
4
measurements mesoscopic
4
mesoscopic junctions
4
junctions impossibility
4
impossibility measuring
4
measuring noncommuting
4
quantum
4

Similar Publications

Half-Metallic Antiferromagnetic 2D Nonlayered CrSe Nanosheets.

ACS Nano

December 2024

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.

View Article and Find Full Text PDF

Proposal for a quantum mechanical test of gravity at millimeter scale.

Sci Rep

December 2024

Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.

The experimental verification of the Newton law of gravity at small scales has been a longstanding challenge. Recently, torsion balance experiments have successfully measured gravitational force at the millimeter scale. However, testing gravity force on quantum mechanical wave function at small scales remains difficult.

View Article and Find Full Text PDF

A model of entropy production.

Sci Rep

December 2024

The Quantum Institute, Gloversville, United States.

A key tenet of the Transactional Interpretation of Quantum Mechanics is the idea that photon absorption localizes the absorbing material system. In doing so, it measures the location of the absorber and hence reduces information entropy which in turn needs to be balanced by appropriate entropy production, if there is a link between information entropy and thermodynamic entropy. Based on a critical analysis of the physics of information erasure, we clarify the link between information and thermodynamic entropy and develop a rigorous model of entropy production in photon-absorption processes.

View Article and Find Full Text PDF

Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.

Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.

View Article and Find Full Text PDF

Frustrated Magnetism and Spin Anisotropy in a Buckled Square Net YbTaO.

Inorg Chem

December 2024

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

The interplay between quantum effects from magnetic frustration, low-dimensionality, spin-orbit coupling, and crystal electric field in rare-earth materials leads to nontrivial ground states with unusual magnetic excitations. Here, we investigate YbTaO, which hosts a buckled square net of Yb ions with = 1/2 moments. The observed Curie-Weiss temperature is about -1 K, implying an antiferromagnetic coupling between the Yb moments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!