Experimental observation of critical phenomena in a laser light system.

Phys Rev Lett

Department of Electrical Engineering, Technion, Haifa 32000, Israel.

Published: July 2010

We experimentally demonstrate critical behavior of a passively mode-locked laser with properties that are similar to those of gas-liquid and magnetic spin systems. The laser light modes provide a special nonthermodynamic many-body system where noise takes the role of temperature. It is also a rare opportunity of an experimental pure one-dimensional system. As theoretically predicted, we identified in the laser light-mode system two thermodynamiclike phases, one characterized by spontaneous pulses and the second by field-induced parapulses, separated by a first order phase transition boundary that is terminated by the critical point. We also measured the critical exponents, β≈0.52, γ≈1, and δ≈3.1, which are close to the mean field values that are exact in the laser system.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.105.013905DOI Listing

Publication Analysis

Top Keywords

laser light
8
laser
5
system
5
experimental observation
4
critical
4
observation critical
4
critical phenomena
4
phenomena laser
4
light system
4
system experimentally
4

Similar Publications

The present study investigates the potential contribution of Photobiomodulation (PBM) to the regeneration of the bone following the extraction of the first mandibular molar in rats. The study evaluates the efficacy of PBM, using both Low-Level Laser Therapy (LLLT) and Light-Emitting Diode Therapy (LEDT), as promotors of osteoblastic activity and the formation of new bone. Study design, setting, and sample: 45 male Wistar rats were divided randomly into three groups of 15 individuals - (i) control group (left lower molar removed only), (ii) the LLL group (molar removed, followed by LLLT), and (iii) the LED group (molar removed, followed by LEDT).

View Article and Find Full Text PDF

Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.

View Article and Find Full Text PDF

Low-threshold anisotropic polychromatic emission from monodisperse quantum dots.

Natl Sci Rev

February 2025

Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Colloidal quantum dots (QDs) are solution-processable semiconductor nanocrystals with favorable optoelectronic characteristics, one of which is their multi-excitonic behavior that enables broadband polychromatic light generation and amplification from monodisperse QDs. However, the practicality of this has been limited by the difficulty in achieving spatial separation and patterning of different colors as well as the high pumping intensity required to excite the multi-excitonic states. Here, we have addressed these issues by integrating monodisperse QDs in multi-excitonic states into a specially designed cavity, in which the QDs exhibit an anisotropic polychromatic emission (APE) characteristic that allows for tuning the emission from green to red by shifting the observation direction from perpendicular to lateral.

View Article and Find Full Text PDF

Investigation of Er-Doped BaF Single Crystals for Infrared Emission and Photovoltaic Efficiency Enhancement.

Luminescence

January 2025

Department of Physics, IMN, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain.

Er-doped BaF single crystals were investigated with two primary aims: first, to probe the infrared emissions from the I level (around 1.0 μm) under 1500-nm excitation and, second, to use the crystal to enhance the efficiency of silicon-based solar cells through upconversion mechanism. Upon excitation at 1500 nm, the upconversion emission spectrum of the Er-doped BaF single crystals, recorded in the range of 480-1080 nm, exhibited two well-structured visible bands at 538 and 650 nm, along with a strong near infrared emission at 971 nm.

View Article and Find Full Text PDF

Background/objectives: Adaptive optics ophthalmoscopy (AOO) has the potential to provide insights into AMD pathology and to assess the risk of progression. We aim to utilise AOO to describe detailed features of intermediate AMD and to characterise microscopic changes during atrophy development.

Subjects/methods: Patients with intermediate AMD were recruited into PINNACLE, a prospective observational cohort study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!