Here we present a detailed study of the spinel CdEr2Se4 and show it to be a new instance of spin ice, the first one in an erbium material and the first one in a spinel. Definitive experimental evidence comes from the temperature dependence of the magnetic entropy, which shows an excellent agreement with the predicted behavior for a spin ice state. Crystal field calculations demonstrate that the change in the local environment from that of the titanates completely alters the rare-earth anisotropy giving rise, in the case of Er3+, to the required Ising anisotropy, when Er2Ti2O7 behaves as an XY antiferromagnet. This finding opens up the possibility of new exotic ground states within the CdR2Se4 and CdR2Se4 families.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.104.247203DOI Listing

Publication Analysis

Top Keywords

spin ice
12
cder2se4 erbium
4
erbium spin
4
ice system
4
system spinel
4
spinel structure
4
structure detailed
4
detailed study
4
study spinel
4
spinel cder2se4
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!