Photonic crystal slabs provide unique opportunities for the manipulation of light on semiconductor chips. The patterns of holes in the slabs are typically designed to maximize the width, depth and symmetry of a single photonic band gap. Quasicrystalline patterns are ideal from this point of view; here, we show that, owing to the presence of multiple Bragg scattering length scales, they also have the desirable property of supporting multiple photonic band gaps in the same slab. This opens up the possibility of creating polychromatic cavities that could be used to extend the possibilities for single photons on optical chips, including on-chip frequency conversion in III-V semiconductors. We study several quasicrystalline structures which support high quality cavity modes at multiple resonant frequencies using 2D and 3D FDTD simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.104.243901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!